### MES w statyce ośrodka ciągłego

Piotr Pluciński e-mail: Piotr.Plucinski@pk.edu.pl Jerzy Pamin e-mail: Jerzy.Pamin@pk.edu.pl

Katedra Technologii Informatycznych w Inżynierii Wydział Inżynierii Lądowej Politechniki Krakowskiej Strona domowa: www.CCE.pk.edu.pl



2 Dyskretyzacja MES

3 Płaski stan naprężenia











Wektor gęstości sił masowych [N/m<sup>3</sup>]
$$\rho \mathbf{b} = \rho \begin{bmatrix} 0\\ 0\\ -g \end{bmatrix}$$





Wektor gęstości sił masowych  $[N/m^3]$  $\rho {\bf b} = \rho \left[ egin{array}{c} 0 \\ 0 \\ -g \end{array} \right]$ 

Wektor gęstości sił powierzchniowych  $[N/m^2]$ 

$$\mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$





Wektor gęstości sił masowych 
$$[N/m^3]$$
  

$$\rho \mathbf{b} = \rho \begin{bmatrix} 0\\ 0\\ -g \end{bmatrix}$$

Wektor gęstości sił powierzchniowych  $[N/m^2]$ 

$$\mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

Przemieszczenie, odkształcenie, naprężenie (notacja Voigta)

$$\mathbf{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}, \ \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{xy} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{xz} & \epsilon_{yz} & \epsilon_{zz} \end{bmatrix} \rightarrow \begin{bmatrix} \epsilon_x \\ \epsilon_y \\ \epsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}, \ \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix} \rightarrow \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$





Równanie równowagi ciała

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$





Równanie równowagi ciała

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$

Statyczne warunki brzegowe

 $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$ 

gdzie  $\sigma$  – tensor naprężenia





Równanie równowagi ciała

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$

Statyczne warunki brzegowe

 $t = \sigma n$ 

gdzie 
$$\sigma$$
 – tensor naprężenia

Wykorzystując twierdzenie Greena-Gaussa-Ostrogradzkiego

$$\int_{S} \boldsymbol{\sigma} \mathbf{n} \mathrm{d}S = \int_{V} \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V \qquad \text{gdzie } \mathbf{L} - \text{macierz operatorów różniczkowych}$$



### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$



### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\boldsymbol{\sigma}_{ij,j} + \rho b_{i} = 0$$



### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w\equiv \delta {\bf u}$  – kinematycznie dopuszczalna wariacja przemieszczenia

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$



#### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w \equiv \delta \mathbf{u}$  – kinematycznie dopuszczalna wariacja przemieszczenia (zgodna z kinematycznymi warunkami brzegowymi)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{n} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathrm{b} \mathrm{d}V = 0$$



#### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w \equiv \delta \mathbf{u}$  – kinematycznie dopuszczalna wariacja przemieszczenia (zgodna z kinematycznymi warunkami brzegowymi)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathbf{n} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d}V = 0$$



#### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w \equiv \delta \mathbf{u}$  – kinematycznie dopuszczalna wariacja przemieszczenia (zgodna z kinematycznymi warunkami brzegowymi)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d}V = 0$$



### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w \equiv \delta \mathbf{u}$  – kinematycznie dopuszczalna wariacja przemieszczenia – zasada prac wirtualnych

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$\int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V = \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d}V$$



### Równania Naviera

$$\int_{V} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Sformułowanie słabe – funkcja wagowa  $w\equiv \delta {\bf u}$  – kinematycznie dopuszczalna wariacja przemieszczenia – zasada prac wirtualnych

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left( \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$

$$\int_{V} (\mathbf{L}\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V = \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d}V$$

$$\uparrow$$
praca sił wewnętrznych praca sił zewnętrznych



# Dyskretyzacja MES (n=LWE, N=LSSU, E=LEU)

Aproksymacja pola przemieszczeń

$$\mathbf{u}^{eh} = \sum_{i=1}^{n} N_{i}^{e}(\xi, \eta, \zeta) \mathbf{d}_{i}^{e} = \mathbf{N}^{e} \mathbf{d}^{e}$$

$$\sum_{[3\times3n]}^{n} = \begin{bmatrix} N_{1}^{e} & 0 & 0 & | \dots & | & N_{n}^{e} & 0 & 0 \\ 0 & N_{1}^{e} & 0 & | \dots & | & 0 & N_{n}^{e} & 0 \\ 0 & 0 & N_{1}^{e} & | \dots & | & 0 & 0 & N_{n}^{e} \end{bmatrix} \qquad \mathbf{d}_{[3n\times1]}^{e} = \begin{bmatrix} \mathbf{d}_{1}^{e} \\ \dots \\ \mathbf{d}_{n}^{e} \end{bmatrix}$$

$$\mathbf{d}_{2}^{e} = \mathbf{T}_{2n\times11}^{e} \mathbf{d}_{2n\times11}^{e} \qquad \mathbf{d}_{n}^{e} \end{bmatrix}$$



 $\mathbf{T}^{e} = \mathbf{T}^{e} \mathbf{B}^{e}$  – macierz transformacji uwzględniająca topologię ( $\mathbf{B}^{e}$ ) oraz cosinusy kierunkowe pomiędzy osiami układu globalnego i lokalnego ( $\mathbf{T}^{e}$ )



Równanie równowagi ( $ho \mathbf{b}^e = \mathbf{f}^e$  – wektor sił objętościowych)

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$



$$\begin{split} &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \\ &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \end{split}$$



$$\begin{split} &\sum_{e=1}^{E} \left\{ \int_{V^{e}} (\mathbf{L}^{e} \delta \mathbf{u}^{e})^{\mathrm{T}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} (\delta \mathbf{u}^{e})^{\mathrm{T}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} (\delta \mathbf{u}^{e})^{\mathrm{T}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0 \\ &\sum_{e=1}^{E} \left\{ \int_{V^{e}} (\mathbf{L}^{e} \mathbf{N}^{e} \delta \mathbf{d}^{e})^{\mathrm{T}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} (\mathbf{N}^{e} \delta \mathbf{d}^{e})^{\mathrm{T}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} (\mathbf{N}^{e} \delta \mathbf{d}^{e})^{\mathrm{T}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0 \end{split}$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$
$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\delta \mathbf{d}^{e})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d}V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d}S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d}V^e \right\} = 0$$
$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d}V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d}S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d}V^e \right\} = 0$$

$$\sum_{e=1}^{E} \frac{\mathbf{T}^{e} \delta \mathbf{d}}{\left( \delta \mathbf{d}^{e} \right)^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d} V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d} S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d} V^{e} \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$(\delta \mathbf{d})^{\mathrm{T}} \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\frac{(\delta \mathbf{d})^{\mathrm{T}}}{\forall \delta \mathbf{d}} \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$



### Równanie równowagi

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$



$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$
  
siły wewnętrzne = siły zewnętrzne



### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$



#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $\sigma = \mathbf{D}\varepsilon$ liniowy związek kinematyczny:  $\varepsilon = \mathbf{L}\mathbf{u}$  $\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$ 



#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $\sigma = \mathbf{D}\varepsilon$ liniowy związek kinematyczny:  $\varepsilon = \mathbf{L}\mathbf{u}$  $\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$ 

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \mathbf{D}^{e} \mathbf{B}^{e} \mathbf{T}^{e} \mathbf{d} \, \mathrm{d} V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d} S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d} V^{e} \right\}$$



#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $\sigma = D\varepsilon$ liniowy związek kinematyczny:  $\varepsilon = Lu$ 

$$\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}^e$$

$$\sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e \operatorname{T}} \mathbf{D}^{e} \mathbf{B}^{e} \mathrm{d} V^{e} \right\} \mathbf{T}^{e} \mathrm{d} = \sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{S^{e}} \mathbf{N}^{e \operatorname{T}} \mathbf{t}^{e} \mathrm{d} S^{e} + \int_{V^{e}} \mathbf{N}^{e \operatorname{T}} \mathbf{f}^{e} \mathrm{d} V^{e} \right\}$$



#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $\sigma = D\varepsilon$ liniowy związek kinematyczny:  $\varepsilon = Lu$ 

$$\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}^e$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{K}}^{e} \mathbf{T}^{e} \mathbf{d} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}_{\mathsf{b}}^{e} + \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}^{e}$$



#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $\sigma = \mathbf{D}\varepsilon$ liniowy związek kinematyczny:  $\varepsilon = \mathbf{L}\mathbf{u}$  $\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$ 

$$\frac{\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{K}}^{e} \mathbf{T}^{e}}{\mathrm{K}} \mathbf{d} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}_{\mathrm{b}}^{e} + \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}^{e}$$
K Pb P


## Równanie równowagi dla układu zdyskretyzowanego

#### Równanie równowagi

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Uwzględnienie związków kinematycznych i konstytutywnych

liniowa sprężystość:  $oldsymbol{\sigma} = \mathbf{D}oldsymbol{arepsilon}$ liniowy związek kinematyczny:  $oldsymbol{arepsilon} = \mathbf{L}\mathbf{u}$ 

 $\boldsymbol{\sigma}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$ 

#### Równanie równowagi

$$\mathbf{Kd} = \mathbf{p}_{\mathsf{b}} + \mathbf{p}$$



# Płaski stan naprężenia ( $\sigma_z = 0$ )

Wektor funkcji przemieszczeń  $\mathbf{u} = \{u(x, y), v(x, y)\}$ 

Wektor odkształcenia

 $\boldsymbol{\varepsilon} = \{\varepsilon_x, \varepsilon_y, \gamma_{xy}\}$ 

Wektor naprężenia

$$\boldsymbol{\sigma} = \{\sigma_x, \sigma_y, \tau_{xy}\}$$

Wektor intensywności sił powierzchniowych

$$\mathbf{t} = \{t_x, t_y\}$$

Wektor obciążenia objętościowego

 $\mathbf{f} = \{f_x, f_y\}$ 

Macierz związków konstytutywnych

$$\mathbf{D} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

Macierz operatorów różniczkowych

L

$$= \begin{bmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}$$



# Płaski stan naprężenia ( $\sigma_z = 0$ )

#### Macierz sztywności

$$\mathbf{k}^e = \int_{A^e} \mathbf{B}^{e\mathrm{T}} \mathbf{D}^e \mathbf{B}^e h^e \mathrm{d}A^e$$

$$A^e, h^e$$
 – pole powierzchni i grubość ES

### Wektor obciążenia elementu

$$\mathbf{p}^e = \int_{A^e} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^e h^e \mathrm{d}A^e$$



#### Wektor sił brzegowych

$$\mathbf{p}_{\mathsf{b}}^{e} = \int_{\Gamma^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} h^{e} \mathrm{d}\Gamma^{e}$$



### Elementy skończone dla tarczy

### Element trójwęzłowy

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \,\mathbf{d}^{e}$$
$$\mathbf{N}^{e}_{i} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} \end{bmatrix}, \,\mathbf{d}^{e}_{i} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \end{bmatrix}$$





### Elementy skończone dla tarczy

### Element trójwęzłowy

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \,\mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} \end{bmatrix}, \,\mathbf{d}^{e} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \end{bmatrix}$$





 $d_3$ 

Metody obliczeniowe, 2022 © J.Pamin

 $u^e$ ,  $d_e$ 

### Tarczowe elementy skończone

### Element czterowęzłowy

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} \end{bmatrix}$$
$$\mathbf{d}^{e} = \{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}\}$$





### Tarczowe elementy skończone

### Element czterowęzłowy

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} \end{bmatrix}$$
$$\mathbf{d}^{e} = \{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}\}$$







Przykład Statyka tarczy





Przykład Statyka tarczy





Statyka tarczy

### Macierz związków konstytutywnych

$$\mathbf{D} = \frac{18 \cdot 10^6}{1 - 0.25^2} \begin{bmatrix} 1 & 0.25 & 0\\ 0.25 & 1 & 0\\ 0 & 0 & \frac{1 - 0.25}{2} \end{bmatrix} \text{ [kPa]}$$





Statyka tarczy

Macierz związków konstytutywnych

$$\mathbf{D} = \frac{18 \cdot 10^6}{1 - 0.25^2} \begin{bmatrix} 1 & 0.25 & 0\\ 0.25 & 1 & 0\\ 0 & 0 & \frac{1 - 0.25}{2} \end{bmatrix} \text{ [kPa]}$$
$$\mathbf{D} = \begin{bmatrix} 19.2 & 4.8 & 0\\ 4.8 & 19.2 & 0\\ 0 & 0 & 7.2 \end{bmatrix} \cdot 10^6 \text{ [kPa]}$$





Statyka tarczy

### Funkcje kształtu- Element 1

$$\begin{split} N_i^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) &= \frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 2x^{(\mathrm{l})} - 4y^{(\mathrm{l})} + 8}{8}, \qquad N_k^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) = \frac{x^{(\mathrm{l})}y^{(\mathrm{l})}}{8} \\ N_j^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) &= -\frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 2x^{(\mathrm{l})}}{8}, \qquad N_l^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) = -\frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 4y^{(\mathrm{l})}}{8} \\ \mathbf{N}^1 &= \begin{bmatrix} N_i^1 & 0 & N_j^1 & 0 & N_k^1 & 0 & N_l^1 & 0 \\ 0 & N_i^1 & 0 & N_j^1 & 0 & N_k^1 & 0 & N_l^1 \end{bmatrix} \end{split}$$





Statyka tarczy

#### Macierz $\mathbf{K}$ – Element 1

$$\mathbf{B}^{1}(x^{(1)},y^{(1)}) = \begin{bmatrix} \frac{y^{(1)}}{8} - \frac{1}{4} & 0 & \frac{1}{4} - \frac{y^{(1)}}{8} & 0 & \frac{y^{(1)}}{8} & 0 & -\frac{y^{(1)}}{8} & 0 \\ 0 & \frac{x^{(1)}}{8} - \frac{1}{2} & 0 & -\frac{x^{(1)}}{8} & 0 & \frac{x^{(1)}}{8} & 0 & \frac{1}{2} - \frac{x^{(1)}}{8} \\ \frac{x^{(1)}}{8} - \frac{1}{2} & \frac{y^{(1)}}{8} - \frac{1}{4} & -\frac{x^{(1)}}{8} & \frac{1}{4} - \frac{y^{(1)}}{8} & \frac{x^{(1)}}{8} & \frac{y^{(1)}}{8} & \frac{1}{2} - \frac{x^{(1)}}{8} & -\frac{y^{(1)}}{8} \end{bmatrix}$$





Statyka tarczy

#### Macierz $\mathbf{K}$ – Element 1

$$\mathbf{B}^{1}(x^{(1)}, y^{(1)}) = \begin{bmatrix} \frac{y^{(1)}}{8} - \frac{1}{4} & 0 & \frac{1}{4} - \frac{y^{(1)}}{8} & 0 & \frac{y^{(1)}}{8} & 0 & -\frac{y^{(1)}}{8} & 0 \\ 0 & \frac{x^{(1)}}{8} - \frac{1}{2} & 0 & -\frac{x^{(1)}}{8} & 0 & \frac{x^{(1)}}{8} & 0 & \frac{1}{2} - \frac{x^{(1)}}{8} \\ \frac{x^{(1)}}{8} - \frac{1}{2} & \frac{y^{(1)}}{8} - \frac{1}{4} & -\frac{x^{(1)}}{8} & \frac{1}{4} - \frac{y^{(1)}}{8} & \frac{x^{(1)}}{8} & \frac{y^{(1)}}{8} & \frac{1}{2} - \frac{x^{(1)}}{8} & -\frac{y^{(1)}}{8} \end{bmatrix}$$
$$\mathbf{K}^{1} = \int_{0}^{2} \int_{0}^{4} \mathbf{B}^{1^{\mathrm{T}}} \mathbf{D} \mathbf{B}^{1} h \, \mathrm{d} x^{(1)} \mathrm{d} y^{(1)} = \begin{bmatrix} 16 & 6 & -1.6 & -1.2 & -8 & -6 & -6.4 & 1.2 \\ -1.6 & 1.2 & 16 & -6 & -6.4 & -1.2 & -8 & 6 \\ -1.2 & 10.4 & -6 & 28 & 1.2 & -24.4 & 6 & -14 \\ -1.6 & 1.2 & 16 & -6 & -6.4 & -1.2 & -8 & 6 \\ -1.2 & 10.4 & -6 & 28 & 1.2 & -24.4 & 6 & -14 \\ -8 & -6 & -6.4 & -1.2 & -24.4 & 6 & -14 \\ -6 & -1.4 & -1.2 & -24.4 & 6 & -16 & 1.2 & 16 & -6 \\ 1.2 & -24.4 & 6 & -14 & -1.2 & 10.4 & -6 & 28 \end{bmatrix} \cdot 10^{5}$$





Statyka tarczy

#### Funkcje kształtu – Element 2

$$\begin{split} N_i^2(x^{(2)}, y^{(2)}) &= \frac{2 - y^{(2)}}{2}, \qquad N_k^2(x^{(2)}, y^{(2)}) = \frac{y^{(2)} - x^{(2)}}{2} \\ N_j^2(x^{(2)}, y^{(2)}) &= \frac{x^{(2)}}{2} \\ \mathbf{N}^2 &= \begin{bmatrix} N_i^2 & 0 & N_j^2 & 0 & N_k^2 & 0 \\ 0 & N_i^2 & 0 & N_j^2 & 0 & N_k^2 \end{bmatrix} \end{split}$$







Statyka tarczy

#### Macierz $\mathbf{K}$ – Element 2

$$\mathbf{B}^{2}(x^{(2)}, y^{(2)}) = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$







Statyka tarczy

Macierz  $\mathbf{K}$  – Element 2

$$\mathbf{B}^{2}(x^{(2)}, y^{(2)}) = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\mathbf{K}^{2} = \mathbf{B}^{2^{\mathrm{T}}} \mathbf{D} \mathbf{B}^{2} h A^{2} = \begin{bmatrix} 7.2 & 0 & 0 & -7.2 & -7.2 & 7.2 \\ 0 & 19.2 & -4.8 & 0 & 4.8 & -19.2 \\ 0 & -4.8 & 19.2 & 0 & -19.2 & 4.8 \\ -7.2 & 0 & 0 & 7.2 & -7.2 & -7.2 \\ -7.2 & 4.8 & -19.2 & 7.2 & 26.4 & -12 \\ 7.2 & -19.2 & 4.8 & -7.2 & -12 & 26.4 \end{bmatrix} \cdot 10^{5}$$





Statyka tarczy

### Wektor $\mathbf{p}_{b}$ – Element 1

$$\mathbf{p}_{\mathbf{b}}^{1} = \int_{\Gamma_{ij}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$





Statyka tarczy







Statyka tarczy

#### Wektor $\mathbf{p}_{b}$ – Element 1

$$\mathbf{p}_{\mathsf{b}}^{1} = \int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$





Wektor 
$$\mathbf{p}_{\mathsf{b}}$$
 – Element 1

$$\mathbf{p}_{b}^{1} = \int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$
$$\int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma = \int_{0}^{4} \left( \mathbf{N}^{1}(x^{(1)}, y^{(1)} = 2) \right)^{\mathrm{T}} \begin{bmatrix} 0 \\ -3\left(1 - \frac{x^{(1)}}{4}\right) - 6\frac{x^{(1)}}{4} \end{bmatrix} \mathrm{d}x^{(1)}$$
$$= \{0 \ 0 \ 0 \ 0 \ 0 \ -10 \ 0 \ -8\}$$





Wektor 
$$\mathbf{p}_{\mathsf{b}}$$
 – Element 1

$$\mathbf{p}_{\mathsf{b}}^{1} = \{0 \ 0 \ 0 \ 0 \ 0 \ -10 \ 0 \ -8\} + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$
$$\int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma = \int_{0}^{2} \left( \mathbf{N}^{1} (x^{(1)} = 0, y^{(1)}) \right)^{\mathrm{T}} \mathbf{t} \mathrm{d}y^{(1)}$$
$$= \{R_{1}^{1} \ R_{2}^{1} \ 0 \ 0 \ 0 \ 0 \ R_{7}^{1} \ R_{8}^{1}\}$$





Statyka tarczy







Statyka tarczy

Wektor  $\mathbf{p}_b$  – Element 2

$$\mathbf{p}_{\mathsf{b}}^{2} = \int_{\Gamma_{ij}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$





 $d_{2}^{2} = d_{5}$ 

 $T_{d_4^2 = d_6}$ 

Statyka tarczy

Wektor  $\mathbf{p}_b$  – Element 2

$$\mathbf{p}_{b}^{2} = \int_{\Gamma_{ij}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \, \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$
wspólna krawędź
równowaga sił
wzdłuż linii 2-5
$$\mathbf{t}_{jk}^{1} = -\mathbf{t}_{ki}^{2}$$







Statyka tarczy

#### Wektor $\mathbf{p}_b$ – Element 2

$$\mathbf{p}_{\mathsf{b}}^2 = -\int_{\Gamma_{jk}^2} \mathbf{N}^2^{\mathrm{T}} \mathbf{t} \mathrm{d}\Gamma$$







Statyka tarczy

#### Wektor $\mathbf{p}_b$ – Element 2

$$\mathbf{p}_{b}^{2} = -\int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$
$$\int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma = \int_{0}^{2} \left( \mathbf{N}^{1}(x^{(2)}, y^{(2)} = 2) \right)^{\mathrm{T}} \begin{bmatrix} 0 \\ -6\left(1 - \frac{x^{(2)}}{2}\right) - 7.5 \frac{x^{(2)}}{2} \end{bmatrix} \mathrm{d}x^{(2)}$$
$$= \{0 \ 0 \ 0 \ -7 \ 0 \ -6.5\}$$





Statyka tarczy

Wektor  $\mathbf{p}_b$  – Element 2

$$\mathbf{p}_{\mathsf{b}}^{2} = \begin{bmatrix} 0\\ 0\\ -7\\ 0\\ -6.5 \end{bmatrix}$$







Statyka tarczy























Statyka tarczy

















Statyka tarczy

### Agregacja - Macierz sztywności

$$\mathbf{K} = \mathbf{B}^{1^{\mathrm{T}}} \mathbf{K}^{1} \mathbf{B}^{1} + \mathbf{B}^{2^{\mathrm{T}}} \mathbf{K}^{2} \mathbf{B}^{2}$$




# Przykład

Statyka tarczy

Agregacja - Macierz sztywności



Przykład

Statyka tarczy



$$\mathbf{p}_{\mathsf{b}} = \mathbf{B}^{\mathbf{1}^{\mathrm{T}}} \mathbf{p}_{\mathsf{b}}^{1} + \mathbf{B}^{\mathbf{2}^{\mathrm{T}}} \mathbf{p}_{\mathsf{b}}^{2}, \qquad \mathbf{p} = \mathbf{0}$$





Przykład

Statyka tarczy





 $3 \ kN/m$ 







## Układ równań MES: $\mathbf{Kd} = \mathbf{p} + \mathbf{p}_b$

| <b>1</b> 6 | -6    | -1.6  | 1.2   | 0     | 0    | -6.4 | -1.2  | -8    | 6     | 1    | $\begin{bmatrix} d_1 \end{bmatrix}$ |   | F 07  |   | $\lceil R_1 \rceil$ | 1 |
|------------|-------|-------|-------|-------|------|------|-------|-------|-------|------|-------------------------------------|---|-------|---|---------------------|---|
| -6         | 28    | -1.2  | 10.4  | 0     | 0    | 1.2  | -24.4 | 6     | -14   |      | $d_2$                               |   | -8    |   | $R_2$               | I |
| -1.6       | -1.2  | 42.4  | -6    | -19.2 | 7.2  | -8   | -6    | -13.6 | 6     |      | $d_3$                               |   | 0     |   | 0                   | l |
| 1.2        | 10.4  | -6    | 54.4  | 4.8   | -7.2 | -6   | -14   | 6     | -43.6 |      | $d_4$                               |   | -16.5 |   | 0                   | l |
| 0          | 0     | -19.2 | 4.8   | 19.2  | 0    | 0    | 0     | 0     | -4.8  | 105  | $d_5$                               | _ | 0     |   | 0                   |   |
| 0          | 0     | 7.2   | -7.2  | 0     | 7.2  | 0    | 0     | -7.2  | 0     | . 10 | $d_6$                               | - | -7    | т | 0                   |   |
| -6.4       | 1.2   | -8    | -6    | 0     | 0    | 16   | 6     | -1.6  | -1.2  |      | $d_7$                               |   | 0     |   | $R_7$               |   |
| -1.2       | -24.4 | -6    | -14   | 0     | 0    | 6    | 28    | 1.2   | 10.4  |      | $d_8$                               |   | 0     |   | $R_8$               |   |
| -8         | 6     | -13.6 | 6     | 0     | -7.2 | -1.6 | 1.2   | 23.2  | -6    |      | $d_9$                               |   | 0     |   | 0                   |   |
| L 6        | -14   | 6     | -43.6 | -4.8  | 0    | -1.2 | 10.4  | -6    | 47.2  |      | $d_{10}$                            |   | 0     |   | L o _               |   |











## Układ równań MES: $\mathbf{Kd} = \mathbf{p} + \mathbf{p}_b$

| <b>1</b> 6 | -6    | -1.6  | 1.2   | 0     | 0    | -6.4 | -1.2  | -8    | 6     | 1    | F 0 7    |   | 0     |   | $R_1$ |
|------------|-------|-------|-------|-------|------|------|-------|-------|-------|------|----------|---|-------|---|-------|
| -6         | 28    | -1.2  | 10.4  | 0     | 0    | 1.2  | -24.4 | 6     | -14   |      | 0        |   | -8    |   | $R_2$ |
| -1.6       | -1.2  | 42.4  | -6    | -19.2 | 7.2  | -8   | -6    | -13.6 | 6     |      | $d_3$    |   | 0     |   | 0     |
| 1.2        | 10.4  | -6    | 54.4  | 4.8   | -7.2 | -6   | -14   | 6     | -43.6 |      | $d_4$    |   | -16.5 |   | 0     |
| 0          | 0     | -19.2 | 4.8   | 19.2  | 0    | 0    | 0     | 0     | -4.8  | 105  | $d_5$    | _ | 0     |   | 0     |
| 0          | 0     | 7.2   | -7.2  | 0     | 7.2  | 0    | 0     | -7.2  | 0     | . 10 | $d_{6}$  | = | -7    | + | 0     |
| -6.4       | 1.2   | -8    | -6    | 0     | 0    | 16   | 6     | -1.6  | -1.2  |      | Ő        |   | 0     |   | $R_7$ |
| -1.2       | -24.4 | -6    | -14   | 0     | 0    | 6    | 28    | 1.2   | 10.4  |      | 0        |   | 0     |   | $R_8$ |
| -8         | 6     | -13.6 | 6     | 0     | -7.2 | -1.6 | 1.2   | 23.2  | -6    |      | $d_9$    |   | 0     |   | 0     |
| 6          | -14   | 6     | -43.6 | -4.8  | 0    | -1.2 | 10.4  | -6    | 47.2  |      | $d_{10}$ |   | 0     |   | 0     |











### Układ równań MES: $\mathbf{Kd} = \mathbf{p} + \mathbf{p}_b$

-1.6 0 - 6.46 16 -6 1.20 -1.2-8 0  $R_1 \\ R_2$ -1.2 1.2 -6 2810.40 0 -24.46 -14 -1.6 -1.242.4-6 -19.27.2-8 -6 -13.6  $d_3$  $d_4$ 0 0 6 1.2 10.4-6 54.44.8-7.2 -6 -14 6 -43.6 -16.5 0 19.2 0 0 0 -19.24.80 0 0 -4.8  $10^{5}$  $d_5$ 0 -7 0 0 0 = + 7.2 -7.2 0 0 0 -7.20 0 0  $d_{6}$ -1.6 16 6 28 -6.41.2-8 -6 -1.2 0  $R_7$ -1.2 -6 -14 6 1.2  $R_8$ -24.410.40 -8 6 -13.66 0-7.2 -1.6 1.2 23.2 -6  $d_{9}$ 0 õ 0) -4.8 0 -1.2  $d_{10}$ . 0 6 -14 6 -43.6 10.4-6 47.2

Rozwiązanie:

 $\mathbf{d} = \{0\ 0\ 3.881\ \text{-}11.03\ 3.949\ \text{-}19.62\ 0\ 0\ \text{-}3.744\ \text{-}10.75\} \cdot 10^{-5} \text{ m}$ 

 $\mathbf{R} = \{-54\ 16.744\ 0\ 0\ 0\ 0\ 54\ 14.756\ 0\ 0\}\ kN$ 





### Powrót do elementu: Element 1

$$\mathbf{d}^{1} = \mathbf{B}^{1}\mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$





#### Powrót do elementu: Element 1

$$\mathbf{d}^{1} = \mathbf{B}^{1} \mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{1} = \mathbf{B}^{1} \mathbf{d}^{1}$$
$$\boldsymbol{\varepsilon}^{1} = \begin{bmatrix} 0.953y - 0.936 \\ -0.034x \\ 0.953x - 0.034y - 2.688 \end{bmatrix} \cdot 10^{-5}, \quad \boldsymbol{\varepsilon}^{1}(2, 1) = \begin{bmatrix} 1.708 \\ 6.831 \\ -81.600 \end{bmatrix} \cdot 10^{-7}$$





# Przykład <sub>Statyka</sub> tarczy



$$\mathbf{d}^{1} = \mathbf{B}^{1} \mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{1} = \mathbf{B}^{1} \mathbf{d}^{1}$$
$$\boldsymbol{\varepsilon}^{1} = \begin{bmatrix} 0.953y - 0.936 \\ -0.034x \\ 0.953x - 0.034y - 2.688 \end{bmatrix} \cdot 10^{-5}, \quad \boldsymbol{\varepsilon}^{1}(2, 1) = \begin{bmatrix} 1.708 \\ 6.831 \\ -81.600 \end{bmatrix} \cdot 10^{-7}$$
$$\boldsymbol{\sigma}^{1} = \mathbf{D}\boldsymbol{\varepsilon}^{1}$$
$$\boldsymbol{\sigma}^{1} = \begin{bmatrix} 182.976y - 179.712 - 1.632x \\ 45.744y - 44.928 - 6.528x \\ 68.616x - 2.448y - 193.536 \end{bmatrix}, \quad \boldsymbol{\sigma}^{1}(2, 1) = \begin{bmatrix} 0 \\ -12.297 \\ -58.750 \end{bmatrix} \text{ kPa}$$





### Powrót do elementu: Element 2

$$\mathbf{d}^2 = \mathbf{B}^2 \mathbf{d} = \{-3.744 - 10.75 \ 3.949 - 19.62 \ 3.881 - 11.03\} \cdot 10^{-5}$$





### Powrót do elementu: Element 2

$$\mathbf{d}^{2} = \mathbf{B}^{2} \mathbf{d} = \{-3.744 - 10.75 \ 3.949 - 19.62 \ 3.881 - 11.03\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{2} = \mathbf{B}^{2} \mathbf{d}^{2}$$
$$\boldsymbol{\varepsilon}^{2} = \begin{bmatrix} 3.416\\ 13.660\\ -48.610 \end{bmatrix} \cdot 10^{-7}$$





#### Powrót do elementu: Element 2

 $\mathbf{d}^{2} = \mathbf{B}^{2} \mathbf{d} = \{-3.744 - 10.75 \ 3.949 - 19.62 \ 3.881 - 11.03\} \cdot 10^{-5}$  $\boldsymbol{\varepsilon}^{2} = \mathbf{B}^{2} \mathbf{d}^{2}$  $\boldsymbol{\varepsilon}^{2} = \begin{bmatrix} 3.416 \\ 13.660 \\ -48.610 \end{bmatrix} \cdot 10^{-7}$  $\boldsymbol{\sigma}^{2} = \mathbf{D}\boldsymbol{\varepsilon}^{2}$  $\boldsymbol{\sigma}^{2} = \begin{bmatrix} 0 \\ -24.593 \\ -35.000 \end{bmatrix} \text{ kPa}$ 





