Introduction to Computational Methods

Witold Cecot
Institute for Computational
Civil Engineering

Cracow University of Technology

Designing and Modeling in Engineering

```
general idea
```


Designing and Modeling in Engineering

Designing and Modeling in Engineering

MODELING = MODEL SELECTION + COMPUTATION

Designing and Modeling in Engineering

MODELING = MODEL SELECTION + COMPUTATION

Designing and Modeling in Engineering

A recent study sponsored by the United States Government concluded that enterprise-wide "... modeling and simulation are emerging as key technologies to support manufacturing in the 21st century, and no other technology offers more potential than modeling and simulation for improving products, perfecting processes, reducing design-to-manufacturing cycle time, and reducing product realization costs..."

Designing and Modeling in Engineering

Design is IMPERFECT, TRADE-OFFS are required, RISK must be ACCEPTED but MITIGATED

Modeling

- Model selection for
- object

boundary value problem (initial)

Modeling

- Model selection for
- object + boundary conditions (+ initial conditions)

boundary value problem (initial)

Modeling

- Model selection for
- object + boundary conditions (+ initial conditions)

- material

coefficients
(eg. constant)

Modeling

- Model selection for
- object + boundary conditions (+ initial conditions)

- material

coefficients
(eg. constant)
- values of parameters
deterministic/stochastic distribution

A Mathematical Model

- An example of a linear problem

Find function $u(x) \in C^{2}(\Omega): R^{2} \ni \Omega \rightarrow R$ such that

$u \in H_{0}^{1} ; \quad \int_{\Omega} k \nabla v \circ \nabla u \mathrm{~d} \Omega=\int_{\Omega} v q \mathrm{~d} \Omega+\int_{\partial \Omega_{N}} v \hat{g} \mathrm{~d} s \quad \forall v \in H_{0}^{1}$

- in general
$L(u)=-q(+$ b.c. $) \quad$ or $\quad b(v, u)=l(v) \quad \forall v \in V$

FEM applications

Fig. 2.1 A plane stress region divided into finite elements.

Shape functions

Fig. 2.3. A 'global' shape function $-\bar{N}_{i}$

Shape functions

FEM applications

Fig. 6.2 A systematic way of dividing a three-dimensional object into 'brick'-type elements.

FEM applications

Fig. 6.1 A tetrahedral volume. (Always use a consistent order of numbering, e.g., for p count the other node: in an anticlockwise order as viewed from p, giving the element as ijmp, etc.).

Modeling

- Solution Aproximation
- basis functions

$$
u_{X}(x)=\sum_{i=1}^{N} \alpha_{i} \varphi_{i}(x)
$$

Modeling

- Solution Aproximation
- basis functions

$$
u_{X}(x)=\sum_{i=1}^{N} \alpha_{i} \varphi_{i}(x)
$$

- Algorithm
- cut-off errors iterations, expansions ...

Modeling

- Solution Aproximation
- basis functions

$$
u_{X}(x)=\sum_{i=1}^{N} \alpha_{i} \varphi_{i}(x)
$$

- Algorithm
- cut-off errors iterations, expansions ...
- round-off errors
$R_{\text {comp }}$ is not closed with respect to,,$+-_{,}^{*}$,/ operations

Modeling

- Solution Aproximation
- basis functions

$$
u_{X}(x)=\sum_{i=1}^{N} \alpha_{i} \varphi_{i}(x)
$$

- Algorithm
- cut-off errors iterations, expansions ...
- round-off errors
$R_{\text {comp }}$ is not closed with respect to $+,-,{ }^{*}, /$ operations

$$
\sqrt{x+1}-\sqrt{x}=\frac{1}{\sqrt{x+1}+\sqrt{x}}
$$

Modeling

- Other error sources
- Insufficient user knowledge inadequate model inappropriate mesh improper result interpretation
- Bug in the code
- Wrong data

Modeling

- Other error sources
- Insufficient user knowledge inadequate model inappropriate mesh improper result interpretation
- Bug in the code
- Wrong data
- Mathematics in modeling
- If we are not sure that a solution exists then what we try to approximate numerically?
- If we do not know which class of functions the solution belongs to, then we cannot properly define its approximation and the measure for the accuracy
- Classical error control theory is mainly focused on approximation errors

FEM applications

FEM applications

(b)

FEM applications

Air flow around an airplane wing

FEM applications

Longitudinal residual stress component in railroad rail

FEM applications

Scattering of electromagnetic waves
Exterior of a ball discretized by finite and infinite elements

FEM applications

FEM approximation of electric field

FEM applications

Exact electric field

FEM applications

Heat transfer

Modeling

Columns in Syria

Model

Problem formulation

Problem formulation

$\sigma=\sigma(x), \quad b=b(x)$
elastic material
small displacement gradients
$\rightarrow \quad \sigma(x) A=N(x), \quad b(x) A=q(x)$
$\rightarrow \quad \sigma(x)=E \varepsilon(x)$
$\rightarrow \quad \varepsilon(x)=\frac{d u}{d x} \quad \rightarrow \quad \sigma=E \frac{d u}{d x}$
short range of intermolecular forces

Problem formulation

Momentum Conservation Principle (Second Newton's Law of Motion)
\rightarrow Equilibrium Equations

Problem formulation

Momentum Conservation Principle (Second Newton's Law of Motion)
\rightarrow Equilibrium Equations

$$
A \sigma(x) n_{-}+A \int_{x}^{x+\Delta x} q(y) \mathrm{d} y+A \sigma(x+\triangle x) n_{+}=0 \quad \forall \omega \subset(0, l)
$$

Problem formulation

Momentum Conservation Principle (Second Newton's Law of Motion)
\rightarrow Equilibrium Equations

$$
\begin{aligned}
& A \sigma(x) n_{-}+A \int_{x}^{x+\Delta x} q(y) \mathrm{d} y+A \sigma(x+\triangle x) n_{+}=0 \quad \forall \omega \subset(0, l) \\
& n_{-}=-1, \quad n_{+}=1
\end{aligned}
$$

Problem formulation

Momentum Conservation Principle (Second Newton's Law of Motion)
\rightarrow Equilibrium Equations

$$
\begin{aligned}
& A \sigma(x) n_{-}+A \int_{x}^{x+\Delta x} q(y) \mathrm{d} y+A \sigma(x+\triangle x) n_{+}=0 \quad \forall \omega \subset(0, l) \\
& n_{-}=-1, \quad n_{+}=1
\end{aligned}
$$

Find $u(x)$ such that:

$$
A E \frac{d u}{d x}(x+\triangle x)-A E \frac{d u}{d x}(x)=-\int_{x}^{x+\Delta x} q(y) \mathrm{d} y \quad \forall \omega \subset(0, l)+\text { b.c. } \rightarrow \mathrm{FVM}
$$

Problem formulation

- Taylor formula: $\quad \exists \xi: \frac{d u}{d x}(x+\triangle x)=\frac{d u}{d x}(x)+\frac{d^{2} u}{d x^{2}}(\xi) \triangle x \quad$ (if $u^{\prime \prime}$ exists)
- Mean value theorem: $\exists \eta: \int_{x}^{x+\Delta x} q(y) \mathrm{d} y=q(\eta) \triangle x \quad$ (if q is continuous)

Problem formulation

- Taylor formula: $\quad \exists \xi: \frac{d u}{d x}(x+\triangle x)=\frac{d u}{d x}(x)+\frac{d^{2} u}{d x^{2}}(\xi) \triangle x \quad$ (if $u^{\prime \prime}$ exists)
- Mean value theorem: $\exists \eta: \int_{x}^{x+\Delta x} q(y) \mathrm{d} y=q(\eta) \triangle x \quad$ (if q is continuous)
- $\triangle x \rightarrow 0$

Problem formulation

- Taylor formula: $\quad \exists \xi: \frac{d u}{d x}(x+\triangle x)=\frac{d u}{d x}(x)+\frac{d^{2} u}{d x^{2}}(\xi) \triangle x \quad$ (if $u^{\prime \prime}$ exists)
- Mean value theorem: $\exists \eta: \int_{x}^{x+\Delta x} q(y) \mathrm{d} y=q(\eta) \triangle x \quad$ (if q is continuous)
- $\triangle x \rightarrow 0$

Find $u(x) \in C^{2}([0, l])$ such that:

$$
\left\{\begin{array}{l}
A E \frac{d^{2} u}{d x^{2}}=-q(x) \quad \forall x \in(0, l) \\
u(0)=0 \\
A E \frac{d u}{d x}(l) n(l)=P
\end{array}\right.
$$

Thank you

