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A recent study sponsored by the United States Government concluded
that enterprise-wide “... modeling and simulation are emerging as key tech-
nologies to support manufacturing in the 21st century, and no other techno-
logy offers more potential than modeling and simulation for improving pro-
ducts, perfecting processes, reducing design-to-manufacturing cycle time,
and reducing product realization costs...”
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Design is IMPERFECT, TRADE-OFFS are required,

RISK must be ACCEPTED but MITIGATED
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• Model selection for

- object + boundary conditions (+ initial conditions)

boundary value problem

(initial)

- material

E, ν
coefficients

(eg. constant)

- values of parameters deterministic/stochastic distribution
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• An example of a linear problem

Find function u(x) ∈ C2(Ω): R2 ∋ Ω → R such that























k△u = −q in Ω

u = 0 on ∂ΩD

k
∂u

dn
= ĝ on ∂ΩN

∂ΩD

∂ΩN

Ω

or

u ∈ H1
0 ;

∫

Ω

k∇v ◦ ∇u dΩ =

∫

Ω

vq dΩ +

∫

∂ΩN

vĝ ds ∀v ∈ H1
0

• in general

L(u) = −q (+ b.c.) or b(v, u) = l(v) ∀v ∈ V
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• Solution Aproximation

- basis functions uX(x) =
N

∑

i=1

αi ϕi(x)

• Algorithm

- cut-off errors iterations, expansions ...

- round-off errors

Rcomp is not closed with respect to +,-,*,/ operations

√
x + 1 −

√
x =

1√
x + 1 +

√
x
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• Other error sources

- Insufficient user knowledge
inadequate model
inappropriate mesh
improper result interpretation

- Bug in the code
- Wrong data
- • • •

• Mathematics in modeling

- If we are not sure that a solution exists then what we try to approximate
numerically?

- If we do not know which class of functions the solution belongs to, then
we cannot properly define its approximation and the measure for the
accuracy

- Classical error control theory is mainly focused on approximation errors
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Air flow around an airplane wing
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Longitudinal residual stress component in railroad rail
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Scattering of electromagnetic waves
Exterior of a ball discretized by finite and infinite elements
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Heat transfer



Modeling

25Columns in Syria Model
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l

b

b p (pA = P )A

σ(x)n− σ(x + △x)n+

σ = σ(x), b = b(x) → σ(x)A = N(x), b(x)A = q(x)

elastic material → σ(x) = Eε(x)

small displacement gradients → ε(x) =
du

dx
→ σ = E

du

dx

short range of intermolecular forces
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27

replacements

x x + △x

bσ(x)n− σ(x + △x)n+

Momentum Conservation Principle (Second Newton’s Law of Motion)
→ Equilibrium Equations

Aσ(x)n− + A

∫ x+△x

x

q(y) dy + Aσ(x + △x)n+ = 0 ∀ω ⊂ (0, l)

n− = −1, n+ = 1

Find u(x) such that:

AEdu
dx

(x + △x) − AEdu
dx

(x) = −
∫ x+△x

x
q(y) dy ∀ω ⊂ (0, l)+ b.c. →FVM
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- Taylor formula: ∃ξ :
du

dx
(x + △x) =

du

dx
(x) +

d2u

dx2
(ξ)△x (if u′′ exists)

- Mean value theorem: ∃η :

∫ x+△x

x

q(y) dy = q(η)△x (if q is continuous)

- △x → 0

Find u(x) ∈ C2([0, l]) such that:























AE
d2u

dx2
= −q(x) ∀x ∈ (0, l)

u(0) = 0

AE
du

dx
(l)n(l) = P

→ FDM



Thank you


