
On 
oupled �eld modelingW. Ce
ot, M.Sera�n1 Introdu
tionMany real life phenomena and pro
esses are of 
oupled, often multi-physi
al nature.In order to reprodu
e the most important physi
al e�e
ts they have to be des
ribed byvarious �elds that intera
t in spa
e and time and are governed by di�erent laws involv-ing dependent variables. Therefore they require advan
ed mathemati
al formulations,numeri
al methods and 
omputational te
hniques [1, 3, 5℄. The obje
tive of this reportis to present general 
lassi�
ation of 
oupled �elds problems and details of formulationas well as dis
retization for a sele
ted example.2 Classi�
ation of 
oupled �eld problemsA brief preliminary 
lassi�
ation of 
oupled �eld problems is presented in this se
tion.The 
lassi�
ation was inspired by paper by Hameyer et al. [3℄.Considering type of physi
al e�e
ts a

ounted for one may distinguish the followingproblems:1. Ex
lusively me
hani
al problems due to independent treatment of
• displa
ement and stress
• displa
ement, strain and stress.2. Me
hani
al pro
esses 
oupled with other physi
al e�e
ts, that indu
e strain dis-tortions in solids resulting from e.g.
• temperature 
hange → thermo-me
hani
al problems
• shrinkage or expansion of a 
omposite 
omponent (e.g. shrinkage of 
on
rete,reinfor
ement rust development in 
on
rete)→ 
hemo-me
hani
al problems.3. Fluid-stru
ture intera
tion (porous media, aeroelasti
ity, o�shore stru
tures, ...)

→ �uid-solid 
oupling.4. A
ousti
-elasti
 problems.5. Bio-heat generation and transfer.6. Ele
tro-me
hani
al problems.7. More than two-�eld problems, like thermo-hydro-me
hani
al, welding (CFD, EM,heat, solidi�
ation), ele
tro-magneto-�uid.1



8. Other.The above presented 
lassi�
ation may be illustrated graphi
ally (Fig. 1). Me-
hani
s is here in the 
entral position sin
e displa
ements, strains and stresses are ofprimary interest in 
ivil engineering.
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al presentation of systemati
 for sele
ted 
oupled problems.Domain of analysis may lead to:1. multi-domain (
oupling on an interfa
e)2. one-domain (
oupling in the bulk).S
ale, whi
h is a

ounted for, 
lassi�es 
omputation as1. one s
ale analysis2. multis
ale analysis.Despite the forward models also inverse problems, sensitivity analysis, optimization orun
ertainty are 
onsidered.In order to illustrate 
oupled �eld modeling let us 
onsider the following exemplaryproblems:A � in
ompressible materialB � shrinkage of 
on
rete with thermo-me
hani
al e�e
ts.The �rst problem is ex
lusively me
hani
al of stationary type and its main di�
ultyis material in
ompressibility (Poisson ratio ν = 0.5) resulting generally in impossibilityof expressing stresses in terms of displa
ements. The se
ond problem involves twophysi
al e�e
ts � me
hani
al and 
hemi
al, and the 
oupling results from me
hani
aldeformations indu
ed by 
hemi
al rea
tions.2



3 Mathemati
al modelA variety of physi
al �elds present in the 
oupled �eld problems makes the 
orre-sponding mathemati
al models more sophisti
ated than in the 
ase of 
lassi
al e.g.me
hani
al pro
esses. In this se
tion we present the most important mathemati
alissues of 
oupled problems.1. Energy spa
es used in formulations are the following:
• L2(Ω) (e.g. displa
ements, temperature de�ned by �rst order equations) �spa
e of square integrable fun
tions, 
ontinuity is not required
• H1(Ω) (e.g. displa
ements, temperature de�ned by se
ond order equations)� spa
e of fun
tions with square integrable �rst derivatives, 
ontinuity isrequired
• H1(
url, Ω) (e.g. ele
tri
 or magneti
 �elds) � spa
e of ve
tor valued fun
-tions with square integrable 
url, 
ontinuity of tangential 
omponent is re-quired
• H1(div, Ω) (e.g. stresses) � spa
e of ve
tor (tensor) fun
tions with squareintegrable divergen
e, 
ontinuity of normal (tra
tion) 
omponent is required.2. Coupling between the �elds that are used may be
• weak (
alled also one-way or load transfer or loose) � dependent variables
an be eliminated (mixed formulations resulting from operator splitting)
• strong (
alled also two-way or dire
t or tight) � dependent variables usually
annot be eliminated.3. Dependent variables result from
• either physi
al problem (e.g. displa
ement and temperature)
• or formulation itself (e.g. displa
ement and stresses, stresses and Lagrangemultipliers).The exemplary problem formulations are shown below.A � mixed formulation e.g. Hellinger�Reissner prin
iple: �nd stress �eld σ ∈ H1

t̂
(div,Ω, S)and displa
ement �eld u ∈ L2(Ω,V), su
h that:











∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ =
∫

∂Ωu

τ n · ûds

∫

Ω

v · divσ dΩ = −
∫

Ω

v · bdΩ
(1)

∀ τ ∈ H1

0(div,Ω, S), ∀ v ∈ L2(Ω)
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where: C denotes elasti
ity tensor, H1

0
(div,Ω, S) and H1

t̂
(div,Ω, S) stand for the spa
esof stresses with square integrable divergen
e and vanishing or equal to t̂ tra
tions on

∂Ωt, S is the spa
e of se
ond order symmetri
 tensors, û is displa
ement known on
∂Ωu, ∂Ωu ∪ ∂Ωt = ∂Ω, ∂Ωu ∩ ∂Ωt = ∅.B � thermome
hani
s with shrinkage: �nd u ∈ H1

0
(Ω) +h and Θ ∈ H1

0
+ T , su
h that:











∫

Ω

ε(v) : C ε(u) dΩ −
∫

Ω

tr(ε(v)) cΘ dΩ =
∫

∂Ωt

vq ds+
∫

Ω

ε(v) : C εc,as dΩ

∫

Ω

ψ k∇Θ dΩ =
∫

∂Ωs

ψS ds
(2)

∀ v ∈ H1

0
(Ω), ∀ ψ ∈ H1

0
(Ω)where: k is thermal 
ondu
tivity, c denotes thermal expansion 
oe�
ient, S is a heatsour
e, εc,as is the example of 
on
rete shrinkage [4℄, i.e.

εc,as = εc,as · I (3)
εc,as = εc,aso(fcm) · βas(t), I is the identity matrix

εc,aso(fcm) = −αas −

(

fcm

fcmo

6 + fcm

fcmo

)2.5

· 10−6 (4)
βas(t) = 1 − exp

[

−0.2

(

t

t1

)0.5
] (5)where: fcm is the average strength of 
on
rete after 28 days, αas is a 
oe�
ient de-pending on the type of 
ement used.4 ApproximationAppropriate mathemati
al formulation (existen
e of solution) does not, in general,guarantee 
onvergen
e and therefore possibility of obtaining reliable numeri
al results.Therefore, additionally the following 
onditions have to be satis�ed1. Approximability - the best approximation error approa
hes zero when number ofDOF approa
hes in�nity (
omplete polynomials satisfy this 
ondition)2. Stability veri�ed by the inf-sup 
ondition or the de Rham diagram 
ommutativityor interior approximation for ellipti
 problemsFurther numeri
al issues that should be 
arefully 
onsidered to obtain e�
ient nu-meri
al te
hniques for 
oupled �eld problems in
lude:1. Algorithm

• dire
tly 
oupled (one system of equations)4



• staggered (separate systems of equations)2. Methods (ex
lusively FEM or FEM+BEM, e.g. for in�nite domains)3. Compatible meshes either in the bulk or over the interfa
e4. Domain de
ompositionMixed formulation used in the example problem A requires a 
areful sele
tion ofapproximation fun
tions. First, the symmetry of stresses 
annot be enfor
ed a-prioribut in a weak sense [2, 6℄. Therefore formulation (1) must be transformed to thefollowing form: �nd σ ∈ H1

t̂
(div,Ω,M), u ∈ L2(Ω,V) and tensor valued Lagrangemultiplier p ∈ L2(Ω,K) su
h that:























∫

Ω

τ : C−1σ dΩ +
∫

Ω

div τ · udΩ +
∫

Ω

τ · p dΩ =
∫

∂Ωu

τ n · ûds

∫

Ω

v · divσ dΩ = −
∫

Ω

v · b dΩ

∫

Ω

q · σ dΩ = 0

(6)
∀ τ ∈ H1

0
(div,Ω,M), ∀ v ∈ L2(Ω,V), ∀ q ∈ L2(Ω,K)where M is the spa
e of se
ond order (now, not ne
essary symmetri
) tensors, K is thespa
e of skew-symmetri
 tensors. The matrix representation looks as follows:




A B C

BT
0 0

CT
0 0









σ

u

p



 =





c

d

0



 (7)Formulation (6) was used for 2D problems with dis
retization des
ribed below. 9node quadrilateral elements, shown s
hemati
ally in Fig.2, were used. The nodes areordered in the following way:
• vertex nodes: a1, a2, a3, a4 (used only for geometry)
• edge nodes: a5, a6, a7, a8

• middle node: a9.
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Figure 2: Master �nite element K̂.All shape fun
tions are de�ned as produ
ts of the following two sets of 1D fun
tionsthat 
ontain integrated Legendre polynomials
ψ̂1(t) = 1 or ϕ̂1(t) = 1 − t

ψ̂2(t) = t− 1

2
ϕ̂2(t) = t

(8)supplemented with the following higher order shape fun
tions
ψ̂3(t) = ϕ̂3(t) = t(t− 1)

ψ̂4(t) = ϕ̂4(t) = t(t− 1)(t− 2)
. . .

(9)where t ∈ [0, 1].S
alar shape fun
tions ĝ1, . . . , ĝ9 related to nodes a1, . . . , a9 (see Fig.2) are 
on-stru
ted in the following way
ĝ1(ξ, η) = ϕ̂2(ξ) ϕ̂1(η)
ĝ2(ξ, η) = ϕ̂2(ξ) ϕ̂2(η)
ĝ3(ξ, η) = ϕ̂1(ξ) ϕ̂2(η)
ĝ4(ξ, η) = ϕ̂1(ξ) ϕ̂1(η)
ĝ5(ξ, η) = ϕ̂2(ξ) ϕ̂3(η)
ĝ6(ξ, η) = ϕ̂3(ξ) ϕ̂2(η)
ĝ7(ξ, η) = ϕ̂1(ξ) ϕ̂3(η)
ĝ8(ξ, η) = ϕ̂3(ξ) ϕ̂1(η)
ĝ9(ξ, η) = ϕ̂3(ξ) ϕ̂3(η)

(10)
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Additionally, bilinear shape fun
tions that are used for approximation of stresses,are de�ned in the following way:̂
e1(ξ, η) = ϕ̂2(ξ) ψ̂1(η)

ê2(ξ, η) = ϕ̂2(ξ) ψ̂2(η)

ê3(ξ, η) = ψ̂1(ξ) ϕ̂2(η)

ê4(ξ, η) = ψ̂2(ξ) ϕ̂2(η)
· · ·

(11)One of the shape fun
tions used for stress approximation, is shown in Fig. 3.Su
h an approximation enables enfor
ement of only tra
tions 
ontinuity. There is noassumption about stress tensor 
ontinuity.
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Figure 3: FE dis
retization with 4 elements. A basis shape fun
tion for stress approx-imation.Let us 
onsider a plane stress state problem presented in Fig. 4. The model was�xed on the left side and loaded by 
onstant loading on the top. Material data areas follows: Young modulus E = 200 GPa, Poisson ration ν = 0.5. Both mixed anddispla
ement formulations were used to 
ompare results (Fig. 5). One may observefaster 
onvergen
e for the mixed approa
h.PSfrag repla
ements
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Figure 4: Plane stress state problem. Boundary 
onditions.7
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Figure 5: Plate. Convergen
e of solution norms.5 SoftwareThe details of approximation des
ribed in the previous se
tion in�uen
e algorithmsused in the 
omputer 
odes designated for analysis of 
oupled �eld problems. Theirmost important aspe
ts in
lude:1. Type of 
oupling
• Multi-dis
iplinary - one 
ode generates data for another
• Multi-physi
s - all data in one 
ode, weakly or strongly 
oupled problems2. Data base (boundary 
onditions, subdomains) should a

ount for the type of
oupling3. Parallel 
omputing may be parti
ularly pro�table in this type of modelingNowadays pra
ti
ally all 
ommer
ial 
odes 
laim multi-physi
s 
apabilities.6 Con
lusionThe 
lassi�
ation of 
oupled �eld problems in this report is de�nitely not 
ompletesin
e we fo
used only on phenomena and pro
esses related to me
hani
s. However,8



even in so restri
ted 
oupled problems one may �nd a wide variety of pra
ti
al, real-life appli
ations. They always require thorough mathemati
al, numeri
al and 
omputer
onsiderations in order to obtain reliable modeling results.Referen
es[1℄ Multiphysi
s Simulations: Challenges and Opportunities, Park City, Utah, 2011.Report from a Workshop Sponsored by the Institute for Computing in S
ien
e(ICiS).[2℄ D. N. Arnold, R. Falk, and R. Winther. Mixed �nite element methods for linear elas-ti
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s of Computations, 76(260):1699�1723, 2007.[3℄ K. Hameyer, J. Driesen, H. De Gersem, and R. Belmans. The 
lassi�
ation of
oupled �eld problems. IEEE Transa
tions on Magneti
s, (35):1618�1621, 1999.[4℄ W. Kiernozy
ki. Betonowe konstruk
je masywne. Teoria. Wymiarowanie. Realiza-
ja.[5℄ P. Matuszyk and L. Demkowi
z. Parametri
 �nite elements, exa
t sequen
es, andperfe
tly mat
hed layers. Te
hni
al report, ICES REPORT, 2011.[6℄ W. Qiu and L. Demkowi
z. Mixed hp-�nite element method for linear elasti
itywith weakly imposed symmetry. Comp. Meth. Appl. Me
h. Engng, 198:3682�3701,2009.
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