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1 Introduction

Many real life phenomena and processes are of coupled, often multi-physical nature.
In order to reproduce the most important physical effects they have to be described by
various fields that interact in space and time and are governed by different laws involv-
ing dependent variables. Therefore they require advanced mathematical formulations,
numerical methods and computational techniques |1, 3, 5]. The objective of this report
is to present general classification of coupled fields problems and details of formulation
as well as discretization for a selected example.

2 Classification of coupled field problems

A brief preliminary classification of coupled field problems is presented in this section.
The classification was inspired by paper by Hameyer et al. [3].

Considering type of physical effects accounted for one may distinguish the following
problems:

1. Exclusively mechanical problems due to independent treatment of

e displacement and stress

e displacement, strain and stress.

2. Mechanical processes coupled with other physical effects, that induce strain dis-
tortions in solids resulting from e.g.

e temperature change — thermo-mechanical problems

e shrinkage or expansion of a composite component (e.g. shrinkage of concrete,
reinforcement rust development in concrete) — chemo-mechanical problems.

3. Fluid-structure interaction (porous media, aeroelasticity, offshore structures, ...)
— fluid-solid coupling.

4. Acoustic-elastic problems.
5. Bio-heat generation and transfer.
6. Electro-mechanical problems.

7. More than two-field problems, like thermo-hydro-mechanical, welding (CFD, EM,
heat, solidification), electro-magneto-fluid.



8. Other.

The above presented classification may be illustrated graphically (Fig. 1). Me-
chanics is here in the central position since displacements, strains and stresses are of
primary interest in civil engineering.
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Figure 1: Graphical presentation of systematic for selected coupled problems.

Domain of analysis may lead to:
1. multi-domain (coupling on an interface)
2. one-domain (coupling in the bulk).
Scale, which is accounted for, classifies computation as
1. one scale analysis
2. multiscale analysis.

Despite the forward models also inverse problems, sensitivity analysis, optimization or
uncertainty are considered.

In order to illustrate coupled field modeling let us consider the following exemplary

problems:
A — incompressible material
B — shrinkage of concrete with thermo-mechanical effects.

The first problem is exclusively mechanical of stationary type and its main difficulty
is material incompressibility (Poisson ratio v = 0.5) resulting generally in impossibility
of expressing stresses in terms of displacements. The second problem involves two
physical effects — mechanical and chemical, and the coupling results from mechanical
deformations induced by chemical reactions.



3 Mathematical model

A variety of physical fields present in the coupled field problems makes the corre-
sponding mathematical models more sophisticated than in the case of classical e.g.
mechanical processes. In this section we present the most important mathematical
issues of coupled problems.

1. Energy spaces used in formulations are the following:
o [,(2) (e.g. displacements, temperature defined by first order equations) —
space of square integrable functions, continuity is not required

o H'(Q) (e.g. displacements, temperature defined by second order equations)
— space of functions with square integrable first derivatives, continuity is
required

o H'(curl, Q) (e.g. electric or magnetic fields) — space of vector valued func-
tions with square integrable curl, continuity of tangential component is re-
quired

o H'(div, Q) (e.g. stresses) — space of vector (tensor) functions with square
integrable divergence, continuity of normal (traction) component is required.
2. Coupling between the fields that are used may be
e weak (called also one-way or load transfer or loose) — dependent variables
can be eliminated (mixed formulations resulting from operator splitting)
e strong (called also two-way or direct or tight) — dependent variables usually
cannot be eliminated.

3. Dependent variables result from

e cither physical problem (e.g. displacement and temperature)

e or formulation itself (e.g. displacement and stresses, stresses and Lagrange
multipliers).

The exemplary problem formulations are shown below.

A - mixed formulation e.g. Hellinger—Reissner principle: find stress field o € H}(div, 2, S)
and displacement field u € L*(Q,V), such that:

fT:C_lo'dQ+fdiVT-udQ = [ Tn-uds
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where: C denotes elasticity tensor, Hy(div, Q,S) and H; (div, £2, S) stand for the spaces
of stresses with square integrable divergence and vanishing or equal to ¢ tractions on
08);, S is the space of second order symmetric tensors, @ is displacement known on

o8, 08, U 0, = 082, 082, N Oy = 0.
B - thermomechanics with shrinkage: find w € Hy(Q) + h and © € Hy + T, such that:

[e(): Ce(u)dQ — [tr(e(v))cOdQ = [ vgds+ [e(v): Ce.4sd
0 0 oY 0

[$kVOdQ = [ $Sds

Q Qs
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Vv e Hy(Q), V€ Hy(Q)

where: k is thermal conductivity, ¢ denotes thermal expansion coefficient, S is a heat
source, €45 is the example of concrete shrinkage [4], i.e.

€cas = €cas * I (3)

€c7a8 == gc,aso(fcm) : /6(15 (t), I is the ldentlty matrix
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where: f., is the average strength of concrete after 28 days, ays is a coefficient de-
pending on the type of cement used.
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4 Approximation

Appropriate mathematical formulation (existence of solution) does not, in general,
guarantee convergence and therefore possibility of obtaining reliable numerical results.
Therefore, additionally the following conditions have to be satisfied

1. Approximability - the best approximation error approaches zero when number of
DOF approaches infinity (complete polynomials satisty this condition)

2. Stability verified by the inf-sup condition or the de Rham diagram commutativity
or interior approximation for elliptic problems

Further numerical issues that should be carefully considered to obtain efficient nu-
merical techniques for coupled field problems include:

1. Algorithm

e directly coupled (one system of equations)



e staggered (separate systems of equations)
2. Methods (exclusively FEM or FEM+BEM, e.g. for infinite domains)
3. Compatible meshes either in the bulk or over the interface
4. Domain decomposition

Mixed formulation used in the example problem A requires a careful selection of
approximation functions. First, the symmetry of stresses cannot be enforced a-priori
but in a weak sense |2, 6]. Therefore formulation (1) must be transformed to the
following form: find o € Hj(div,Q,M), u € L*(,V) and tensor valued Lagrange
multiplier p € L*(Q, K) such that:

[r:C'odQ+ [divr - udQ+ [7-pdQ= [ Tn-4ads
0 Q 0 80,
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where M is the space of second order (now, not necessary symmetric) tensors, K is the
space of skew-symmetric tensors. The matrix representation looks as follows:

A B C o
BT 0 o u | =
ct’ o o p

(7)
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Formulation (6) was used for 2D problems with discretization described below. 9
node quadrilateral elements, shown schematically in Fig.2, were used. The nodes are
ordered in the following way:

e vertex nodes: aj, as, as, as (used only for geometry)
e edge nodes: as, ag, ar, asg

e middle node: aq.



as

Figure 2: Master finite element K.

All shape functions are defined as products of the following two sets of 1D functions
that contain integrated Legendre polynomials

h(t) = 1 or ot) = 1—t
Uy(t) = t—1 Golt) = t (8)

supplemented with the following higher order shape functions

Ys3(t) = p3(t) = t(t—1)

~

PYa(t) = @u(t) = t(t —1)(t—2) (9)

where ¢ € [0, 1].

Scalar shape functions i, ..., gy related to nodes ay,...,aq (see Fig.2) are con-
structed in the following way

a&n) = @28 p1(n)
920&m) = P2(§) P2(n)
g3(&m) = ¢1(€) P2(n)
ga(&m) = ¢1(&) p1(n)
95(§m) = $a(&) ¢3(n) (10)
96(&,m) = @3(§) P2(n)
g1(&mn) = @1(§) p3(n)
& n) = @3(8) pi(n)
go(&;m) = ¢3(&) P3(n)



Additionally, bilinear shape functions that are used for approximation of stresses,
are defined in the following way:

e1(§,m) $a(8) 1@1 (n)
&2(&n) = $2(8)va(n)
&s(Em) = () @ola) (11)
es(§;m) Pa(§) Pa(n)

One of the shape functions used for stress approximation, is shown in Fig. 3.
Such an approximation enables enforcement of only tractions continuity. There is no
assumption about stress tensor continuity.
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Figure 3: FE discretization with 4 elements. A basis shape function for stress approx-
imation.

Let us consider a plane stress state problem presented in Fig. 4. The model was
fixed on the left side and loaded by constant loading on the top. Material data are
as follows: Young modulus F = 200 G Pa, Poisson ration v = 0.5. Both mixed and
displacement formulations were used to compare results (Fig. 5). One may observe
faster convergence for the mixed approach.
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Figure 4: Plane stress state problem. Boundary conditions.
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Figure 5: Plate. Convergence of solution norms.

5 Software

The details of approximation described in the previous section influence algorithms
used in the computer codes designated for analysis of coupled field problems. Their
most important aspects include:

1. Type of coupling

e Multi-disciplinary - one code generates data for another

e Multi-physics - all data in one code, weakly or strongly coupled problems

2. Data base (boundary conditions, subdomains) should account for the type of
coupling

3. Parallel computing may be particularly profitable in this type of modeling

Nowadays practically all commercial codes claim multi-physics capabilities.

6 Conclusion

The classification of coupled field problems in this report is definitely not complete
since we focused only on phenomena and processes related to mechanics. However,



even in so restricted coupled problems one may find a wide variety of practical, real-
life applications. They always require thorough mathematical, numerical and computer
considerations in order to obtain reliable modeling results.
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