Rozdział 4

Elementy aproksymacji i interpolacji funkcji

4.1. Uwagi wstępne

W tym rozdziale przedstawimy w sposób zwięzły podstawowe pojęcia i metody *teorii aproksymacji* i jej szczególnego przypadku, *aproksymacji interpolacyjnej*, którą będziemy krótko nazywać *interpolacją* [4]. Aproksymację, jak wiemy, wykorzystujemy kiedy dana funkcja ma złożoną postać lub dana jest w postaci dyskretnej, lub gdy w ogóle jest nieznana, jak to ma miejsce przy rozwiązywaniu równań różniczkowych. W każdym z tych przypadków poszukujemy innej, na ogół prostej funkcji, która dobrze przybliża funkcję pierwotną. W zasadzie ograniczymy się tylko do aproksymacji wielomianowej i to w takim zakresie, który będzie nam potrzebny w następnych rozdziałach podręcznika. Wzory i równania wyprowadzimy w zapisie wskaźnikowym oraz w zapisie macierzowym, wykorzystując operacje rachunku macierzowego, zestawione w dodatku D.

4.2. Aproksymacja optymalna

Zadanie aproksymacji optymalnej w bazie jednomianów polega na dobraniu wielomianu aproksymacyjnego

$$P_m(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0 = \sum_{k=0}^m a_k x^k = \boldsymbol{p}(x) \boldsymbol{a} \qquad (4.1)$$

gdzie:

$$\boldsymbol{p} = [1 \ x \dots x^m]$$
 – macierz jednowierszowa jednomianów,
 $\boldsymbol{a} = [a_0 \ a_1 \dots a_m]^T$ – wektor nieznanych parametrów aproksymacji,

w taki sposób, aby przybliżał on daną funkcję f(x) w pewnym sensie najlepiej. Tak sformułowane zadanie może być rozwiązane jeśli ustalimy stopień wielomianu m oraz przyjmiemy kryterium, według którego będziemy oceniać jakość aproksymacji.

Przyjęcie określonego stopnia *m* wielomianu aproksymacyjnego jest trudne, zależne od wielu czynników, i może decydować o jakości aproksymacji. Kryteriów oceny aproksymacji jest wiele, w podręczniku ograniczymy się do *metody najmniejszych kwadratów*, formułującej kryterium najczęściej wykorzystywane.

W dalszym ciągu przedstawimy metodę najmniejszych kwadratów dla tzw. aproksymacji ciągłej i aproksymacji punktowej. Aproksymacją ciągłą nazwiemy aproksymację funkcji f(x) określonej w pewnym przedziale, natomiast w aproksymacji punktowej będziemy aproksymować dyskretny zbiór wartości funkcji f(x), danych w tzw. węzłach aproksymacji $x_i, i = 0, 1, 2, ..., n$.

Rys.4.1. Interpretacja graficzna twierdzenia Weierstrassa

W podręczniku najczęściej będziemy wykorzystywali funkcje aproksymacyjne w postaci wielomianów algebraicznych (4.1). Skuteczność takiej aproksymacji ciągłej wynika z twierdzenia Weierstrassa.

Twierdzenie 1 (Weierstrassa).

Jeśli f(x) jest funkcją określoną i ciągłą w przedziale [a,b] i dane jest $\varepsilon > 0$, to wówczas istnieje wielomian P(x), określony w [a,b], taki że

$$|f(x) - P(x)| < \varepsilon$$
 dla każdego $x \in [a, b]$

Z twierdzenia tego wynika ważny wniosek, że zawsze możemy wyznaczyć taki wielomian P(x), który będzie wystarczająco bliski danej funkcji, rys. 4.1.

4.3. Aproksymacja ciągła

Funkcję $f(x) \in C[a, b]$ aproksymujemy w metodzie najmniejszych kwadratów wielomianem P_m , stopnia najwyżej m, wykorzystując warunek minimalizacji błędu ε w sensie normy L_2 (patrz dodatek A)

$$\varepsilon = \|f(x) - P_m(x)\|_0 = \int_a^b \left(f(x) - P_m(x)\right)^2 \mathrm{d}x$$
 (4.2)

Podstawiając (4.1) do (4.2) otrzymamy funkcję

$$\varepsilon(a_0, a_1, \dots, a_m) = \int_a^b \left(f(x) - \sum_{k=0}^m a_k x^k \right)^2 \mathrm{d}x \tag{4.3a}$$

która po wprowadzeniu zapisu macierzowego ma postać

$$\varepsilon(\boldsymbol{a}) = \int_{a}^{b} \left(f(x) - \boldsymbol{p}(x)\boldsymbol{a} \right)^{2} \mathrm{d}x$$
(4.3b)

Nieznane parametry aproksymacji $a_i, i = 0, 1, \ldots, m$, obliczymy z warunku koniecznego minimum ε

$$\frac{\partial \varepsilon}{\partial a_i} = 0 \qquad \text{dla każdego } i = 0, 1, \dots, m \tag{4.4}$$

Ponieważ

$$\varepsilon = \int_{a}^{b} \left(f(x)\right)^2 \mathrm{d}x - 2\sum_{k=0}^{m} a_k \int_{a}^{b} x^k f(x) \,\mathrm{d}x + \int_{a}^{b} \left(\sum_{k=0}^{m} a_k x^k\right)^2 \mathrm{d}x$$

to otrzymujemy

$$\frac{\partial \varepsilon}{\partial a_i} = -2 \int_a^b x^i f(x) \, \mathrm{d}x + 2 \sum_{k=0}^m a_k \int_a^b x^{i+k} \, \mathrm{d}x \tag{4.5}$$

Wykorzystując (4.5) w (4.4) otrzymujemy tak zwany układ m+1równań normalnych

$$\sum_{k=0}^{m} a_k \int_{a}^{b} x^{i+k} dx = \int_{a}^{b} x^i f(x) dx \quad i = 0, 1, \dots, m$$
(4.6a)

dla obliczenia niewiadomych a_i , i = 0, 1, ..., m. Są to równania liniowe, które zawsze mają rozwiązanie jednoznaczne pod warunkiem, że $f \in C[a, b]$ i $a \neq b$. Odpowiednikiem równań (4.6a) w zapisie macierzowym jest równanie

$$\left[\int_{a}^{b} \boldsymbol{p}^{T}(x) \, \boldsymbol{p}(x) \, \mathrm{d}x\right] \boldsymbol{a} = \int_{a}^{b} \boldsymbol{p}^{T}(x) \, f(x) \, \mathrm{d}x \tag{4.6b}$$

Przykład 4.1. Obliczymy metodą najmniejszych kwadratów aproksymację funkcji $f(x) = \sin \pi x$ w przedziale [0,1].

Wielomian aproksymacyjny przyjmiemy w formie

$$P_2(x) = a_2 x^2 + a_1 x + a_0$$

Wykorzystując (4.6a) dostaniemy układ równań

$$a_{0} \int_{0}^{1} 1 \, dx + a_{1} \int_{0}^{1} x \, dx + a_{2} \int_{0}^{1} x^{2} \, dx = \int_{0}^{1} \sin \pi x \, dx$$

$$a_{0} \int_{0}^{1} x \, dx + a_{1} \int_{0}^{1} x^{2} \, dx + a_{2} \int_{0}^{1} x^{3} \, dx = \int_{0}^{1} x \sin \pi x \, dx \qquad (4.7a)$$

$$a_{0} \int_{0}^{1} x^{2} \, dx + a_{1} \int_{0}^{1} x^{3} \, dx + a_{2} \int_{0}^{1} x^{4} \, dx = \int_{0}^{1} x^{2} \sin \pi x \, dx$$

lub stosując zapis macierzowy (4.6b)

$$\left[\int_{0}^{1} \begin{bmatrix} 1\\x\\x^{2} \end{bmatrix} \left[1 \ x \ x^{2}\right] dx\right] \boldsymbol{a} = \int_{a}^{b} \begin{bmatrix} 1\\x\\x^{2} \end{bmatrix} \sin \pi x \, dx \tag{4.7b}$$

Wykonując nakazane całkowania otrzymamy układ równań

$$a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 = \frac{2}{\pi}$$
$$\frac{1}{2}a_0 + \frac{1}{3}a_1 + \frac{1}{4}a_2 = \frac{1}{\pi}$$
$$\frac{1}{3}a_0 + \frac{1}{4}a_1 + \frac{1}{5}a_2 = \frac{\pi^2 - 4}{\pi^3}$$

którego rozwiązaniem jest

$$a_0 = \frac{12\pi^2 - 120}{\pi^3} \approx -0,050465$$
 $a_1 = -a_2 = \frac{720 - 60\pi^2}{\pi^3} \approx 4,12251$

Wielomian aproksymacyjny ma postać

$$P_2(x) = -4,12251x^2 + 4,12251x - 0,050465$$

Błąd aproksymacji (4.3) wynosi

$$\varepsilon = \int_{0}^{1} \left(\sin \pi x + 4,12251x^2 - 4,12251x + 0,050465\right)^2 dx = 0,01$$

Zauważmy, że elementy macierzy układu równa
ń $\left(4.7\right)$ obliczyć można z ogólnego wzoru

$$\int_{a}^{b} x^{i+k} \mathrm{d}x = \frac{b^{i+k+1} - a^{i+k+1}}{i+k+1}$$

Tak obliczone elementy tworzą tzw. *macierz Hilberta*, która jest źle uwarunkowana i przy jej obliczaniu występuje duży błąd obcięcia, co ma znaczenie przy rozwiązywaniu dużego układu równań.

W dalszym ciągu uogólnimy wyprowadzone równania na przypadek aproksymacji w innej przestrzeni funkcji bazowych niż przestrzeń jednomianów. Wymaga to jednakże podania dwóch definicji i jednego twierdzenia. **Definicja 1.** Zbiór funkcji $\{u_0, u_1, \ldots, u_m\}$ nazwiemy *liniowo niezależnym* w przedziale [a, b], gdzie b > a, jeśli warunek

$$c_0 u_0(x) + c_1 u_1(x) + \dots + c_m u_m(x) = 0$$
 dla każdego $x \in [a, b]$

ma miejsce tylko dla $c_0 = c_1 = \ldots = c_m = 0$. W przeciwnym przypadku zbiór funkcji jest *liniowo zależny*.

Definicja 2. Funkcją wagową w w przedziale [a, b] nazwiemy dowolną nieujemną funkcję całkowalną w tym przedziale.

Funkcję wagową będziemy też nazywać funkcją testową i jej celem jest rozłożenie wagi (lub: ważności) aproksymacji w różnych miejscach przedziału [a, b], co powinno poprawić jakość aproksymacji.

Twierdzenie 2.

Jeśli u_i jest wielomianem stopnia i, dla każdego i = 0, 1, ..., m, to wówczas zbiór funkcji $\{u_0, ..., u_m\}$ jest liniowo niezależny w przedziale [a, b], gdzie a < b.

Przyjmijmy teraz, że $\{u_0, u_1, \ldots, u_m\}$ jest zbiorem funkcji bazowych liniowo niezależnych w przedziale [a, b] i w jest funkcją wagową w [a, b] oraz $f \in C[a, b]$. Parametry $a_i, i = 0, 1, \ldots, m$, funkcji aproksymacyjnej

$$P(x) = \sum_{k=0}^{m} a_k u_k(x) = \boldsymbol{p}(x)\boldsymbol{a}$$
(4.8)

obliczymy minimalizując błąd z wagą w(x)

$$\varepsilon(a_0, a_1, \dots, a_m) = \int_a^b w(x) \Big[f(x) - \sum_{k=0}^m a_k \, u_k(x) \Big]^2 \mathrm{d}x$$
 (4.9a)

który w zapisie macierzowym ma formę

$$\varepsilon(\boldsymbol{a}) = \int_{a}^{b} w(x) \left[(f(x) - \boldsymbol{p}(x)\boldsymbol{a}) \right]^{2} \mathrm{d}x$$
(4.9b)

gdzie:

 $\boldsymbol{p}(x) = [u_0, u_1, \dots, u_m]$ – macierz jednowierszowa funkcji bazowych.

Układ równań normalnych, otrzymany z warunku koniecznego minimum ε , ma postać analogiczną do (4.6)

$$\int_{a}^{b} w(x) f(x) u_{i}(x) dx = \sum_{k=0}^{m} a_{k} \int_{a}^{b} w(x) u_{k}(x) u_{i}(x) dx \quad \text{dla } i = 0, 1, \dots, m$$
(4.10a)

lub w postaci macierzowej

$$\left[\int_{a}^{b} w(x) \boldsymbol{p}^{T}(x) \boldsymbol{p}(x) \,\mathrm{d}x\right] \boldsymbol{a} = \int_{a}^{b} \boldsymbol{p}^{T}(x) \,w(x) \,f(x) \,\mathrm{d}x \tag{4.10b}$$

Przykładami funkcji bazowych p(x) są wielomiany trygonometryczne, wielomiany Legendre'a lub wielomiany Czebyszewa.

Czytelników zainteresowanych dalszymi studiami problematyki aproksymacji ciągłej odsyłamy do podręcznika z metod numerycznych [4, 6].

4.4. Aproksymacja punktowa

W aproksymacji punktowej funkcja f(x) dana jest w formie dyskretnej w postaci zbioru wartości funkcji $\mathbf{F} = [f_0, f_1, \dots, f_n]^T$ (gdzie oznaczono $f_i \equiv f(x_i)$) w węzłach aproksymacji $\mathbf{x} = (x_0, x_1, \dots, x_n)$.

W ogólnym przypadku, wielomian aproksymacyjny $P_m(x)$ można wybrać w postaci wielomianu uogólnionego

$$P_m(x) = a_m u_m(x) + a_{m-1} u_{m-1}(x) + \dots + a_0 u_0(x) =$$

= $\sum_{k=0}^m a_k u_k(x) = \mathbf{p}(x) \mathbf{a}$ (4.11)

gdzie p(x) jest macierzą jednowierszową funkcji bazowych $u_i(x), i = 0, 1, ..., m$, znanych i liniowo niezależnych

$$\boldsymbol{p}(x) = \left[u_0(x), u_1(x), \dots, u_m(x)\right]$$

Odpowiednikiem błędu ε (4.2) w metodzie najmniejszych kwadratów jest teraz błąd

$$\varepsilon = \sum_{i=0}^{n} \left[f(x_i) - P_m(x_i) \right]^2 = \sum_{i=0}^{n} \left[f(x_i) - \boldsymbol{p}(x_i) \boldsymbol{a} \right]^2$$
(4.12)

Warunek konieczny minimum funkcji $\varepsilon(a_0, a_1, \ldots, a_m)$ napiszemy od razu w formie równania macierzowego

$$\frac{\partial \varepsilon}{\partial \boldsymbol{a}} = \boldsymbol{0}: \left[\sum_{i=0}^{n} \boldsymbol{p}^{T}(x_{i}) \, \boldsymbol{p}(x_{i})\right] \boldsymbol{a} = \sum_{i=0}^{n} \boldsymbol{p}^{T}(x_{i}) \, f(x_{i})$$
(4.13)

Jest to liniowy układ równań normalnych, który ma rozwiązanie jednoznaczne pod warunkiem, że $x_i \neq x_j$ dla $i \neq j, i, j = 0, 1, ..., n$. Przyjmując oznaczenia macierzy

$$\boldsymbol{A} = \sum_{i=0}^{n} \boldsymbol{p}^{T}(x_{i}) \, \boldsymbol{p}(x_{i}) \qquad \boldsymbol{B} = \begin{bmatrix} \boldsymbol{p}^{T}(x_{0}) \, \boldsymbol{p}^{T}(x_{i}) \dots \boldsymbol{p}^{T}(x_{n}) \end{bmatrix}$$
(4.14)

równanie (4.13) możemy napisać w zwartej formie

$$\boldsymbol{A}\,\boldsymbol{a} = \boldsymbol{B}\,\boldsymbol{F} \tag{4.15}$$

Podstawiając do (4.11) rozwiązanie $\boldsymbol{a} = \boldsymbol{A}^{-1} \boldsymbol{B} \boldsymbol{F}$ otrzymamy wzór na wielomian u
ogólniony

$$P_m(x) = \boldsymbol{p}(x)\boldsymbol{A}^{-1}\boldsymbol{B}\,\boldsymbol{F} = \boldsymbol{N}(x)\boldsymbol{F}$$
(4.16)

gdzie zdefiniowano macierz jednowierszową funkcji

$$\boldsymbol{N}(x) = \boldsymbol{p}(x) \boldsymbol{A}^{-1} \boldsymbol{B} \tag{4.17}$$

We wzorze (4.16) współczynnikami kombinacji liniowej funkcji $N_i(x)$, $i = 0, 1, \ldots, m$ są obecnie znane wartości funkcji $f(x_i)$, zawarte w wektorze \mathbf{F} . Ponieważ zwykle funkcja f(x) ma jakiś sens fizyczny (na przykład jest to funkcja temperatury, przemieszczenia, naprężenia, ...) to elementy wektora \mathbf{F} nazywa się fizycznymi stopniami swobody. Elementy zawarte w wektorze \mathbf{a} będziemy natomiast nazywać matematycznymi stopniami swobody.

W przypadku, kiedy wielomian aproksymacyjny stopniam < nma postać

$$P_m(x) = \sum_{k=0}^m a_k \, x^k \tag{4.18}$$

tzn. funkcje bazowe są jednomianami, układ równań normalnych w formie

rozwiniętej jest

Również i w aproksymacji punktowej możemy dla poprawy jakości rozwiązania wprowadzić funkcję wagową. Zostanie to pokazane w rozdziale siódmym, przy omawianiu metody bezelementowej Galerkina.

Przykład 4.2. Obliczymy liniowy wielomian aproksymacyjny $P_1(x) = a_0 + a_1 x$ dla danych z tab. 4.1.

i	0	1	2	3
x_i	2	4	6	8
$f(x_i)$	2	11	28	40

Tabela 4.1. Dane do przykładu 4.2

W tym przypadku n = 3 i m = 1. Wykorzystując zapis macierzowy parametry aproksymacji zawarte w wektorze $\boldsymbol{a} = [a_0 \ a_1]^T$ obliczymy z równania (4.15) (można też skorzystać z układu równań (4.19)).

Odpowiednie wektory i macierze mają postać

$$p = [1 x]$$

$$\boldsymbol{A} = \begin{bmatrix} \sum_{i=0}^{3} 1 & \sum_{i=0}^{3} x_i \\ \sum_{i=0}^{3} x_i & \sum_{i=0}^{3} x_i^2 \end{bmatrix} = \begin{bmatrix} 4 & 20 \\ 20 & 120 \end{bmatrix}$$

$$\boldsymbol{B} = [\boldsymbol{p}^{T}(x_{0}) \, \boldsymbol{p}^{T}(x_{1}) \, \boldsymbol{p}^{T}(x_{2}) \, \boldsymbol{p}^{T}(x_{3})] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 6 & 8 \end{bmatrix}$$
$$\boldsymbol{B} \, \boldsymbol{F} = \boldsymbol{B} \begin{bmatrix} 2 \\ 11 \\ 28 \\ 40 \end{bmatrix} = \begin{bmatrix} 81 \\ 536 \end{bmatrix}$$

Równanie A a = B F jest w formie

$$\begin{bmatrix} 4 & 20 \\ 20 & 120 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 81 \\ 536 \end{bmatrix}$$

i ma rozwiązanie $a_0 = -12,50$ i $a_1 = 6,55$. Wielomian aproksymacyjny wynosi

$$P_1(x) = -12,50+6,55x$$

Wynik obliczeń przedstawiono graficznie na rys. 4.2.

Rys.4.2. Wyniki obliczeń w przykładzie 4.2

Przykład 4.3. Zastosujemy aproksymację kwadratow
ą $P_2(x) = a_0 + a_1 x + a_2 x^2$ do danych z tab. 4.2

Obecnie n = 4 i m = 2. Podobnie jak w przykładzie 4.2 niewiadome parametry aproksymacji $\boldsymbol{a} = [a_0 \ a_1 \ a_2]^T$ obliczymy korzystając z równania macierzowego (4.15). Potrzebne do obliczeń wektory i macierze mają postać

$$\boldsymbol{p} = [1 \ x \ x^2]$$

i	0	1	2	3	4
x_i	0	$0,\!25$	$0,\!50$	0,75	1,00
$f(x_i)$	1,0000	1,2840	$1,\!6487$	$2,\!1170$	2,7183

Tabela 4.2. Dane do przykładu 4.3

$$\boldsymbol{A} = \begin{bmatrix} \sum_{i=0}^{4} 1 & \sum_{i=0}^{4} x_i & \sum_{i=0}^{4} x_i^2 \\ \sum_{i=0}^{4} x_i & \sum_{i=0}^{4} x_i^2 & \sum_{i=0}^{4} x_i^3 \\ \sum_{i=0}^{4} x_i^2 & \sum_{i=0}^{4} x_i^3 & \sum_{i=0}^{4} x_i^4 \end{bmatrix} = \begin{bmatrix} 5 & 2,5 & 1,875 \\ 2,5 & 1,875 & 1,5625 \\ 1,875 & 1,5625 & 1,3828 \end{bmatrix}$$
$$\boldsymbol{B} = [\boldsymbol{p}^T(x_0) \dots \boldsymbol{p}^T(x_4)] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0,25 & 0,50 & 0,75 & 1,00 \\ 0 & 0,0625 & 0,25 & 0,5625 & 1,00 \end{bmatrix}$$
$$\boldsymbol{B} = \begin{bmatrix} 1,0000 \\ 1,2840 \\ 1,6487 \\ 2,1170 \\ 2,7183 \end{bmatrix} = \begin{bmatrix} 8,7680 \\ 5,4514 \\ 4,4015 \end{bmatrix}$$

Równanie $\boldsymbol{A}\,\boldsymbol{a}=\boldsymbol{B}\,\boldsymbol{F}$ ma postać

Γ	5	2, 5	1,875	$\begin{bmatrix} a_0 \end{bmatrix}$		8,7680
	2, 5	1,875	1,5625	a_1	=	5,4514
	1,875	1,5625	1,3828	a_2		4,4015

a jego rozwiązanie wynos
i $a_0=1,0052,\ a_1=0,8641,\ a_2=0,8437.$ Wielomian aproksymacyjny jest

$$P_2(x) = 1,0052 + 0,8641x + 0,8437x^2$$

Na rys. 4.3 porównano wynik obliczeń z danymi z tab. 4.2. Błąd $${}_{4}$$

$$\sum_{i=0}^{4} [f(x_i) - P_2(x_i)]^2 = 2,76 \cdot 10^{-4}$$

jest najmniejszym błędem, jaki można uzyskać dla kwadratowego wielomianu aproksymacyjnego.

Rys.4.3. Wyniki obliczeń w przykładzie 4.3

4.5. Interpolacja

4.5.1. Interpolacja Lagrange'a funkcji jednej zmiennej

Interpolacja funkcji f(x) jest szczególnym przypadkiem aproksymacji, który ma miejsce dla m = n. Wówczas w węzłach interpolacji $\boldsymbol{x} = [x_0 \ x_1 \dots x_n]$ wartość funkcji interpolacyjnej P(x) jest dokładnie równa funkcji interpolowanej f(x), rys. 4.4

Rys.4.4. Interpolacja funkcji f(x)

$$P_n(x_i) = f(x_i)$$
 $i = 0, 1, \dots, n$ (4.20)

Wzory i równania wprowadzone w punkcie 4.4 są oczywiście ważne również i dla interpolacji, po uwzględnieniu, że m = n. Prostszym jednakże sposobem jest bezpośrednie wykorzystanie warunków (4.20).

Jeśli funkcję interpolacyjną wybierzemy w postaci wielomianu uogólnionego (4.11), to równania (4.20) przybierają postać

$$p(x_i) a = f_i$$
 $i = 0, 1, ..., n$ (4.21a)

lub w zapisie macierzowym

$$\boldsymbol{B}^T \, \boldsymbol{a} = \boldsymbol{F} \tag{4.21b}$$

gdzie wykorzystano definicję (4.14) macierzy \boldsymbol{B}

$$\boldsymbol{B}^{T} = [\boldsymbol{p}^{T}(x_{0}) \ \boldsymbol{p}^{T}(x_{1}) \dots \boldsymbol{p}^{T}(x_{n})]^{T} = \begin{bmatrix} u_{0}(x_{0}) & u_{1}(x_{0}) & \dots & u_{n}(x_{0}) \\ u_{0}(x_{1}) & u_{1}(x_{1}) & \dots & u_{n}(x_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ u_{0}(x_{n}) & u_{1}(x_{n}) & \dots & u_{n}(x_{n}) \end{bmatrix}$$

oraz wektorów \boldsymbol{a} i \boldsymbol{F}

$$\boldsymbol{a} = [a_0 \ a_1 \ \dots \ a_n]^T \qquad \boldsymbol{F} = [f_0 \ f_1 \ \dots \ f_n]^T$$

Podstawiając rozwiązanie równania (4.21b) $\boldsymbol{a} = (\boldsymbol{B}^T)^{-1} \boldsymbol{F}$ do wielomianu interpolacyjnego (4.11) otrzymamy

$$P_n(x) = \boldsymbol{p}(x) \, \boldsymbol{a} = \boldsymbol{p}(x) \, (\boldsymbol{B}^T)^{-1} \boldsymbol{F} = \boldsymbol{N}(x) \, \boldsymbol{F}$$
(4.22)

gdzie obecnie $\boldsymbol{N}(x)$ zawiera funkcje liniowo niezależne i tworzy
 nową bazę interpolacyjną

$$\mathbf{N}(x) = \mathbf{p}(x) (\mathbf{B}^T)^{-1} = [N_0(x) \ N_1(x) \dots N_n(x)]$$
(4.23)

z fizycznymi stopniami swobody zawartymi w wektorze $\boldsymbol{F}.$

Jeśli bazę p(x) przyjmiemy w postaci jednomianowej

$$\boldsymbol{p}(x) = [1 \ x \ x^2 \ \dots \ x^n]$$

to układ równań (4.21) przyjmuje postać

[1	x_0	x_{0}^{2}		x_0^n	$\begin{bmatrix} a_0 \end{bmatrix}$		f_0
1	x_1	x_{1}^{2}	•••	x_1^n	a_1	=	f_1
1 .	•	•	•		· · ·		•
1 :	:	:	:	:	:		: 1
1		-					
$\lfloor 1$	x_n	x_n^2		x_n^n	a_n		f_n

Ponadto, baza N(x) jest wówczas tzw. bazą Lagrange'a

$$\mathbf{N}(x) = [N_{n,0}(x) \ N_{n,1}(x) \ \dots \ N_{n,n}(x)]$$

utworzoną z wielomianów bazowych Lagrange'a stopnia n o postaci ogólnej

$$N_{n,i}(x) = \prod_{\substack{j=0\\j\neq i}}^{j=n} \frac{x - x_j}{x_i - x_j} =$$

$$= \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_n)}$$
(4.24)

Na rys. 4.5 pokazano wykres funkcji Lagrange'
a ${\cal N}_{n,i}(x).$

Rys.4.5. Wykres funkcji Lagrange'
a ${\cal N}_{n,i}(x)$

Z interpretacji wzoru (4.22) oraz własności interpolacji Lagrange'a ($N_{n,k}(x_i) = \delta_{ki}$, gdzie δ_{ki} jest deltą Kroneckera o własności $\delta_{ki} = 1$ dla k = i oraz $\delta_{ki} = 0$ dla $k \neq i$) wynika ważna równość

$$\sum_{k=0}^{n} N_{n,k}(x) = 1 \tag{4.25a}$$

wyrażająca tzw. warunek kompletności rzędu zerowego dla funkcji bazowych. Ogólnie, warunek kompletności rzędu pjest postaci

$$\sum_{k=0}^{n} N_{n,k}(x) x_k^p = x^p, \qquad p = 0, 1, \dots, n$$
(4.25b)

Jeśli funkcje bazowe spełniają warunki kompletności do rzędu p to oznacza to, że przez ich kombinację liniową można dokładnie przedstawić dowolny wielomian algebraiczny aż do stopnia p włącznie. W praktyce warunki kompletności (zwłaszcza najprostszy rzędu zerowego) wykorzystujemy do sprawdzenia poprawności wyników obliczeń funkcji bazowych Lagrange'a. Bład interpolacji Lagrange'a wyraża wzór

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0) (x - x_1) \dots (x - x_n)$$
(4.26)

gdzie $f \in C^{n+1}[a,b]$ i $\xi \in (a,b)$.

Przykład 4.4. Wyprowadzić wzór na liniowy wielomian interpolacyjny Lagrange'a $P_1(x)$ (n = 1).

Dane: węzły interpolacji $\boldsymbol{x} = (x_0 \ x_1),$

wartości funkcji interpolowanej w węzłach: $F = [f_0 \ f_1]^T$. Wielomian interpolacyjny (4.22) ma postać

$$P_1(x) = N_0(x)f_0 + N_1(x)f_1 = \mathbf{N}(x)\mathbf{F}$$

Funkcje bazowe obliczymy najpierw z wzoru (4.23), gdzie

$$p(x) = \begin{bmatrix} 1 \ x \end{bmatrix}$$
 $B^T = \begin{bmatrix} 1 \ x_0 \\ 1 \ x_1 \end{bmatrix}$ oraz $(B^T)^{-1} = \frac{1}{x_1 - x_0} \begin{bmatrix} x_1 & -x_0 \\ -1 & 1 \end{bmatrix}$

otrzymując

$$\mathbf{N}(x) = \mathbf{p}(x) \, (\mathbf{B}^T)^{-1} = \begin{bmatrix} 1 \ x \end{bmatrix} \frac{1}{x_1 - x_0} \begin{bmatrix} x_1 & -x_0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{x - x_1}{x_0 - x_1} & \frac{x - x_0}{x_1 - x_0} \end{bmatrix}$$

Ten sam wynik oczywiście otrzymamy wykorzystując wprost wzór (4.24). Przyjmując $x_0 = 0$ oraz $x_1 = L$ mamy

$$N_{1,0}(x) = 1 - \frac{x}{L}$$
 $N_{1,1}(x) = \frac{x}{L}$ (4.27)

Powyższe funkcje spełniają warunki kompletności rzędu zerowego i rzędu pierwszego ponieważ

$$\sum_{k=0}^{1} N_{1,k}(x) = 1 - \frac{x}{L} + \frac{x}{L} = 1$$

oraz

$$\sum_{k=0}^{1} N_{1,k}(x)x_k = (1 - \frac{x}{L})x_0 + \frac{x}{L}x_1 = 0 + x = x$$

Na rys. 4.6 pokazano wykresy liniowych funkcji bazowych Lagrange'a (4.27).

Rys.4.6. Liniowa interpolacja Lagrange'a

Przykład 4.5. Wyprowadzić wzór na kwadratowy wielomian interpolacyjny Lagrange'a $P_2(x)$ (n = 2).

Dane: węzły interpolacji $\boldsymbol{x} = (x_0 \ x_1 \ x_2),$

wartości funkcji interpolowanej w węzłach: $\boldsymbol{F} = [f_0 \ f_1 \ f_2]^T$. Wielomian interpolacyjny (4.22) jest w formie

$$P_2(x) = N_0(x)f_0 + N_1(x)f_1 + N_2(x)f_2 = \mathbf{N}(x)\mathbf{F}$$
(4.28)

Funkcje bazowe $N_i(x)$, i = 0, 1, 2 znowu można obliczyć z wzoru (4.23), co już jednak jest bardziej kłopotliwe (można potraktować to jako ćwiczenie), dlatego skorzystamy od razu z wzoru (4.24) otrzymując

$$N_{2,0}(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$
$$N_{2,1}(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$
$$N_{2,2}(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Na rys. 4.7 zilustrowano graficznie wzór (4.28).

Rys.4.7. Interpretacja graficzna kwadratowego wielomianu interpolacyjnego Przyjmując $x_0=0$ oraz $x_1=\frac{L}{2}$ i $x_2=L$ dostaniemy

$$N_{2,0}(x) = \frac{2}{L^2} (x - L) (x - \frac{L}{2})$$

$$N_{2,1}(x) = \frac{4}{L^2} x (L - x)$$

$$N_{2,2}(x) = \frac{2}{L^2} x (x - \frac{L}{2})$$
(4.29)

Na rys. 4.8 narysowano kwadratowe funkcje bazowe Lagrange'a (4.29).

Rys.4.8. Kwadratowa interpolacja Lagrange'a

Przykład 4.6. Wyprowadzić wzór interpolacyjny Lagrange'a stopnia drugiego przybliżający funkcję $f(x) = \frac{1}{x}$, przyjmując węzły interpolacji $x_0 = 2$, $x_1 = 2, 5$ i $x_2 = 4$.

Wykorzystując wzory z przykładu 4.5 obliczymy

$$N_{2,0}(x) = \frac{(x-2,5)(x-4)}{(2-2,5)(2-4)} = x^2 - 6,5x + 10$$
$$N_{2,1}(x) = \frac{(x-2)(x-4)}{(2,5-2)(2,5-4)} = \frac{1}{3}(-4x^2 + 24x - 32)$$
$$N_{2,2}(x) = \frac{(x-2)(x-2,5)}{(4-2)(4-2,5)} = \frac{1}{3}(x^2 - 4,5x + 5)$$

Wartości funkcji f(x) w węzłach interpolacji wynoszą

$$f_0 \equiv f(x_0) = f(2) = \frac{1}{2} = 0,5$$

$$f_1 \equiv f(x_1) = f(2,5) = \frac{1}{2,5} = 0,4$$

$$f_2 \equiv f(x_2) = f(4) = \frac{1}{4} = 0,25$$

Wielomian interpolacyjny Lagrange'a stopnia drugiego ma postać

$$P_2(x) = \sum_{k=0}^{2} N_{2,k}(x) f(x_k) = (x^2 - 6, 5x + 10) \cdot 0, 5 + \frac{1}{3}(-4x^2 + 24x - 32) \cdot 0, 4 + \frac{1}{3}(x^2 - 4, 5x + 5) \cdot 0, 25 = 0, 05x^2 - 0, 425x + 1, 15$$

Dla przykładu, $P_2(3) = 0,325$, a $f(3) = \frac{1}{3} \cong 0,333$.

Z powyższego przykładu wynika, że obliczony wielomian interpolacyjny dobrze przybliża funkcję $f(x) = \frac{1}{x}$. Nie zawsze jednak tak jest, co widzimy rozważając interpolację pokazaną na rys. 4.9a. Na rysunku tym funkcją interpolowaną jest prosta łamana A–B–C–D–E, a funkcjami interpolacyjnymi są wielomiany stopnia drugiego $P_2(x)$, czwartego $P_4(x)$ i ósmego $P_8(x)$. Jak widać, w przypadku wielomianu interpolacyjnego $P_8(x)$ jakość interpolacji w skrajnych przedziałach trudno uznać za zadowalającą: różnice pomiędzy f(x)i $P_8(x)$ są duże. Ten efekt pogarszania się jakości interpolacji wielomianami wysokiego stopnia w skrajnych przedziałach znany jest jako tzw. efekt Rungego. Dlatego zazwyczaj interpolację funkcjami wielomianowymi ograniczamy do wielomianów niskiego stopnia. Pewnym wyjściem jest zastosowanie interpolacji sklejanej, która jest złożona przedziałami z wielomianów niskiego stopnia. Pokazano to na rys.4.9b, gdzie wielomian interpolacyjny jest złożony z czterech wielomianów stopnia drugiego. Taka idea interpolacji sklejanej jest wykorzystywana we współczesnych metodach komputerowych, na przykład w metodzie elementów skończonych, przedstawionej w rozdziale szóstym.

Innym problemem w stosowaniu interpolacji Lagrange'a jest to, że jest ona klasy C^0 , przez co rozumiemy, że w węzłach interpolacji spełniony jest tylko warunek zgodności wartości funkcji interpolowanej z funkcją interpolującą, natomiast nie ma ciągłości w węzłach przynajmniej pierwszych pochodnych (punkty B, C i D na 4.9b). Ten warunek spełnia interpolacja Hermita, opisana w p. 4.6.

Rys.4.9. a) efekt Rungego, b) interpolacja sklejana

4.5.2. Interpolacja Lagrange'a funkcji dwóch zmiennych

Wielomian interpolacyjny Lagrange'a dla funkcji f(x, y) obliczać będziemy podobnie jak to miało miejsce przy interpolacji funkcji jednej zmiennej, pamiętając jednakże, że obecnie funkcje i macierze funkcyjne zależą od dwóch zmiennych (x, y). Przepisując wzór (4.22) mamy

$$P_n(x,y) = \mathbf{N}(x,y)\,\mathbf{F} \tag{4.30}$$

gdzie macierz funkcji bazowych Lagrange'a wyrażona jest wzorem

$$\boldsymbol{N}(x,y) = \boldsymbol{p}(x,y) \, (\boldsymbol{B}^T)^{-1} \tag{4.31}$$

Zastosowanie powyższych wzorów zilustrujemy dwoma przykładami interpolacji funkcji nad obszarem trójkątnym i prostokątnym.

Przykład 4.7. Wyprowadzić wzór interpolacyjny Lagrange'a nad obszarem trójkątnym z trzema węzłami.

Dane: węzły interpolacji $\boldsymbol{x} = ((x_i, y_i) (x_j, y_j) (x_k, y_k)),$

wartości funkcji interpolowanej w węzłach:

$$\boldsymbol{F} = [f(x_i, y_i) \equiv f_i \quad f(x_j, y_j) \equiv f_j \quad f(x_k, y_k) \equiv f_k]^T.$$

Na rys. 4.10 pokazano rozważany trójkąt z numeracją węzłów i współrzędnymi węzłów.

Rys.4.10. Obszar trójkątny z trzema węzłami

Interpolację funkcji możemy też wyrazić poprzez matematyczne stopnie swobody wykorzystując wzór (4.11) (dla m = n), co zostało pokazane na rys. 4.11. Należy zauważyć, że numeracja węzłów i, j, k jest przeciwna do ruchu wskazówek zegara.

Rys.4.11. Interpolacja liniowa funkcji f(x, y) nad obszarem trójkątnym

Korzystając w dalszym ciągu ze wzorów (4.30) i (4.31) napiszemy potrzebne wektory i macierze.

Macierz jednowierszowa jednomianów

$$\boldsymbol{p}(x,y) = [1 \ x \ y]$$

Macierz \boldsymbol{B}^T i jej odwrotność

$$\boldsymbol{B}^{T} = \begin{bmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{j} & y_{j} \\ 1 & x_{k} & y_{k} \end{bmatrix}$$
$$(\boldsymbol{B}^{T})^{-1} = \frac{1}{2A} \begin{bmatrix} x_{j}y_{k} - x_{k}y_{j} & x_{k}y_{i} - x_{i}y_{k} & x_{i}y_{j} - x_{j}y_{i} \\ y_{j} - y_{k} & y_{k} - y_{i} & y_{i} - y_{j} \\ x_{k} - x_{j} & x_{i} - x_{k} & x_{j} - x_{i} \end{bmatrix}$$

gdzie A jest powierzchnią trójkąta lub 2A jest wyznacznikiem macierzy \boldsymbol{B}^T . Znak wyznacznika się zmieni, jeśli węzły zostaną ponumerowane zgodnie z ruchem wskazówek zegara.

Funkcje bazowe Lagrange'a otrzymamy ze wzoru (4.31) (pomijając w dalszym ciągu pierwszy dolny indeks)

$$N_{i}(x,y) = \frac{1}{2A} [x_{j}y_{k} - x_{k}y_{j} + (y_{j} - y_{k})x + (x_{k} - x_{j})y]$$

$$N_{j}(x,y) = \frac{1}{2A} [x_{k}y_{i} - x_{i}y_{k} + (y_{k} - y_{i})x + (x_{i} - x_{k})y]$$

$$N_{k}(x,y) = \frac{1}{2A} [x_{i}y_{j} - x_{j}y_{i} + (y_{i} - y_{j})x + (x_{j} - x_{i})y]$$
(4.32)

Rys.4.12. Liniowe funkcje bazowe Lagrange'a nad obszarem trójkątnym

Funkcje te możemy również zapisać w zwartej postaci

$$N_i(x,y) = \frac{1}{2A} \left(\alpha_i + \beta_i x + \gamma_i y \right)$$

$$\alpha_i = x_j y_k - x_k y_j \quad \beta_i = y_j - y_k \quad \gamma_i = x_k - x_j \qquad i \neq j \neq k$$
(4.33)

ze zmianą indeksów wg permutacji podstawowej $i \to j \to k$. Funkcje bazowe (4.32) spełniają oczywiście warunek kompletności $\sum_{k=1}^{3} N_k(x, y) = 1$. Na rys. 4.12 pokazano wykresy funkcji bazowych (4.32).

Wzór interpolacyjny Lagrange'a przyjmuje formę

$$P_2(x, y) = N_i(x, y) f_i + N_j(x, y) f_j + N_k(x, y) f_k$$

Przykład 4.8. Wyprowadzić funkcje bazowe Lagrange'a nad obszarem prostokątnym z czterema węzłami.

Dane: węzły interpolacji $\boldsymbol{x} = ((x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4)),$

wartości funkcji interpolowanej w węzłach:

 $\boldsymbol{F} = [f(x_1, y_1) \equiv f_1 \quad f(x_2, y_2) \equiv f_2 \quad f(x_3, y_3) \equiv f_3 \quad f(x_4, y_4) \equiv f_4]^T.$ Rozważany obszar prostokątny jest pokazany na rys. 4.13.

Macierz jednowierszową jednomianów przyjmiemy w postaci

$$\boldsymbol{p}(x,y) = [1 \ x \ y \ xy]$$

Można byłoby zamiast bazowego elementu kwadratowego xy wybrać x^2 lub y^2 . Wybór xy jest jednak preferowany ponieważ implikuje to, że zależność funkcji interpolacyjnych od x i y jest podobna, tzn. że aproksymacja jest tego samego typu w tych kierunkach. Pomimo tego, że w macierzy p(x, y) występuje element kwadratowy xy to zmiana funkcji bazowych w kierunkach x i y (dla odpowiednio y = const. i x = const.) jest liniowa. Z tego powodu taka interpolacja jest nazywana interpolacją dwuliniową.

Funkcje bazowe interpolacji można obliczyć w sposób analogiczny jak to miało miejsce w przykładzie 4.7. Łatwiej jednak jest skorzystać ze wzoru (4.24). Rozważmy na przykład węzeł 1 na rys. 4.13. Funkcja bazowa Lagrange'a w kierunku x jest następująca

$$L_1(x) = \frac{x - x_2}{x_1 - x_2}$$

natomiast w kierunku y jest

$$L_1(y) = \frac{y - y_4}{y_1 - y_4}$$

Funkcję bazową $N_1(x, y)$ obliczymy ze wzoru

$$N_1(x,y) = L_1(x) L_2(y) = \frac{x - x_2}{x_1 - x_2} \quad \frac{y - y_4}{y_1 - y_4} = \frac{1}{4ab} (x - x_2) (y - y_4)$$

gdzie $2a = x_2 - x_1 = x_3 - x_4$ i $2b = y_4 - y_1 = y_3 - y_2$. Łatwo sprawdzić, że warunki interpolacji są spełnione: $N_1(x_1, y_1) = 1$ i $N_1(x_2, y_2) = N_1(x_3, y_3) = N_1(x_4, y_4) = 0$. Wyprowadzając w ten sposób pozostałe funkcje bazowe otrzymamy cztery funkcje bazowe Lagrange'a

$$N_{1}(x,y) = \frac{1}{4ab} (x - x_{2}) (y - y_{4})$$

$$N_{2}(x,y) = \frac{1}{4ab} (x - x_{1}) (y - y_{3})$$

$$N_{3}(x,y) = \frac{1}{4ab} (x - x_{4}) (y - y_{2})$$

$$N_{4}(x,y) = \frac{1}{4ab} (x - x_{3}) (y - y_{1})$$
(4.34)

Rys. 4.14. Dwuliniowa funkcja bazowa Lagrange'
a ${\cal N}_4(x,y)$ nad obszarem prostokątnym

Na rys. 4.14 pokazano przykładowo wykres funkcji $N_4(x, y)$. Funkcja zmienia się liniowo dla linii równoległych do osi układu współrzędnych. Obecność członu $xy \le p(x, y)$ oznacza, że w każdym innym kierunku zmiana funkcji jest już nieliniowa.

Budowa funkcji bazowych Lagrange'a w obszarze dwuwymiarowym jest zadaniem trudnym, wymagającym dużego doświadczenia. Pomijając fakt, że obszar w którym dokonujemy interpolacji może mieć złożoną geometrię, istotnym jest wybór odpowiedniej macierzy p(x, y). Korzysta się w tym przypadku z trójkąta Pascala, w którym jednomiany są ułożone w sposób systematyczny, rys. 4.15. Dla interpolacji jednowymiarowej trójkąt Pascala degeneruje się do

Rys.4.15. Trójkąt Pascala

1, x, x^2, x^3, \ldots Jeśli w macierzy p(x, y) zawarte są wszystkie człony określonego rzędu (z jednej linii trójkąta Pascala) to otrzymujemy w efekcie *kompletny wielomian* interpolacji. Często, z przyczyn uzasadnionych, konstruuje się wielomiany niekompletne. Nie wchodząc w szczegóły powiemy tylko, że uzasadnioną przyczyną jest brak poprawy zbieżności interpolacji przy zwiększaniu stopnia wielomianu. Wówczas pomijamy te człony, które są tego przyczyną (tzw. człony pasożytnicze).

4.6. Interpolacja Hermite'a

W zastosowaniach praktycznych, w których operuje się zbiorami o dużej liczbie punktów węzłowych, interpolacja Lagrange'a z konieczności musi być stosowana w wersji sklejanej bowiem, jak już o tym mówiliśmy, tylko w ten sposób można uniknąć stosowania wielomianów interpolacyjnych zbyt wysokiego stopnia. Tak sklejona interpolacja nie zawsze jednak może sprostać wymaganiom zastosowań, głównie z powodu występowania nieciągłości funkcji interpolacyjnej $P_n(x)$, będących konsekwencją dokonanych "sklejeń". Tymczasem, wymagania dotyczące ciągłości nie tylko samej funkcji f(x) lecz także jej pochodnych do danego rzędu m włącznie pojawiają się bardzo często i bywają bardzo istotne. Powstaje więc uzasadniona potrzeba odpowiedniego uogólnienia koncepcji interpolacji Lagrange'a. Takie uogólnione wielomiany mają tą własność, że dla danych n + 1 punktów węzłowych x_0, x_1, \ldots, x_n i nieujemnych liczb całkowitych m_0, m_1, \ldots, m_n , wielomianem aproksymującym funkcję $f(x) \in C^m[a, b]$, gdzie $m = \max(m_0, m_1, \ldots, m_n)$ i $x_i \in [a, b], i = 0, 1, \ldots, n$, jest wielomian stopnia co najwyżej

$$M = \sum_{i=0}^{m} m_i + n$$

z własnością, że w każdym punkcie węzłowym $x_i, i = 0, 1, \ldots, n$, funkcja ta i jej wszystkie pochodne rzędu mniejszego lub równego $m_i, i = 0, 1, \ldots, n$ są równe funkcji f(x) i jej odpowiednim pochodnym. Stopień M wielomianu wynika stąd, że liczba warunków, które muszą być spełnione wynosi $\sum_{i=0}^{n} m_i + (n+1)$ i właśnie wielomian stopnia M ma M + 1 współczynników. Powyższe stwierdzenia podsumujemy w definicji.

Definicja 3. Niech x_0, x_1, \ldots, x_n jest zbiorem n + 1 punktów węzłowych w przedziale [a, b] i m_i są nieujemnymi liczbami całkowitymi związanymi z punktami $x_i, i = 0, 1, \ldots, n$, oraz

$$m = \max_{0 \le i \le n} m_i$$
 i $f(x) \in C^m[a, b]$

Wielomianem uogólnionym, aproksymującym funkcję f(x) jest wielomianem P(x) co najmniej takiego stopnia, że

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}$$

dla wszystkich i = 0, 1, ..., n i $k = 0, 1, ..., m_i$.

Zauważmy, że jeśli n = 0 to wielomian uogólniony jest wielomianem Taylora stopnia m_0 dla f(x) w punkcie x_0 . Jeśli $m_i = 0$ dla i = 0, 1, ..., n, to wielomian uogólniony jest wielomianem interpolacyjnym f(x) w punktach $x_0, x_1, ..., x_n$, tzn. jest wielomianem Lagrange'a. Wielomian uogólniony nazywa się wielomianem Hermite'a jeśli $m_i = 1$ dla wszystkich i = 0, 1, ..., n. Taki wielomian ma tę własność, że w punktach węzłowych $x_0, x_1, ..., x_n$ wartości funkcji f(x) i P(x) i ich pierwszych pochodnych są sobie równe.

Postać wielomianu Hermite'a jest określona dokładniej przez poniższe twierdzenie.

Twierdzenie 3.

Jeśli $f \in C^1[a, b]$ i $x_0, x_1, \ldots, x_n \in [a, b]$ są izolowanymi punktami węzłowymi, to wielomianem Hermite'a, co najmniej stopnia zapewniającego jego zgodność z funkcją f i jej pochodną f', jest wielomian stopnia co najwyżej 2n + 1 określony wzorem

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$
(4.35)

gdzie funkcje bazowe interpolacji są równe

$$H_{n,j}(x) = \left[1 - 2(x - x_j) N'_{n,j}(x_j) \right] N^2_{n,j}(x)$$
$$\hat{H}_{n,j}(x) = (x - x_j) N^2_{n,j}(x)$$

W powyższym twierdzeniu $N_{n,j}$ oznacza funkcję bazową Lagrange'a stopnia n dla punktu węzłowego x_j oraz $(\bullet)' \equiv \frac{\mathrm{d}}{\mathrm{d}x}(\bullet)$.

Dodatkowo, jeśli $f \in C^{2n+2}[a, b]$ to błąd interpolacji Hermite'a wynosi

$$f(x) - H_{2n+1}(x) = \frac{(x - x_0)^2 \dots (x - x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x))$$
(4.36)

gdzie $\xi \in (a, b)$.

W dowodzie twierdzenia, którego nie będziemy przytaczać, wykazuje się, że funkcje $H_{n,j}$ i $\hat{H}_{n,j}$ spełniają warunki

$$H_{n,j}(x_k) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x} H_{n,j}(x_k) = 0 \quad \text{dla każdego } k \\ \widehat{H}_{n,j}(x_k) = 0 \quad \text{dla każdego } k \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x} \widehat{H}_{n,j}(x_k) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

co jest zilustrowane na rys. 4.16.

Rys.4.16. Funkcje bazowe interpolacji Hermite'a

Przykład 4.9. Wyprowadzić wzór interpolacyjny Hermite'a dla dwóch punktów węzłowych.

Dane: węzły interpolacji (x_0, x_1)

wartości funkcji f w węzłach: $(f(x_0) \equiv f_0, f(x_1) \equiv f_1)$ wartości pochodnych funkcji f w węzłach: $(f'(x_0) \equiv f'_0, f'(x_1) \equiv f'_1)$

Wielomian interpolacyjny jest stopni
a $2n+1=2\cdot 1+1=3$ i ma postać

$$H_3(x) = \sum_{j=0}^{1} H_{1,j}(x) f_j + \sum_{j=0}^{1} \widehat{H}_{1,j}(x) f'_j$$

Funkcje bazowe wyznaczymy obliczając kolejno

$$N_{1,0}(x) = \frac{x - x_1}{x_0 - x_1} \qquad N_{1,0}'(x) = \frac{1}{x_0 - x_1}$$
$$H_{1,0}(x) = \left[1 - 2(x - x_0)\frac{1}{x_0 - x_1}\right] \left(\frac{x - x_1}{x_0 - x_1}\right)^2 = (2\xi + 1)(\xi - 1)^2$$

gdzie oznaczono $\xi=(x-x_0)/L,\ L=x_1-x_0$

$$\begin{aligned} \hat{H}_{1,0}(x) &= (x - x_0) \left(\frac{x - x_1}{x_0 - x_1}\right)^2 = L\,\xi(\xi - 1)^2\\ N_{1,1}(x) &= \frac{x - x_0}{x_1 - x_0} \qquad N_{1,1}'(x) = \frac{1}{x_1 - x_0}\\ H_{1,1}(x) &= \left[1 - 2(x - x_1)\frac{1}{x_1 - x_0}\right] \left(\frac{x - x_0}{x_1 - x_0}\right)^2 = \xi^2(3 - 2\xi)\\ \hat{H}_{1,1}(x) &= (x - x_1) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 = L\,\xi^2(\xi - 1)\end{aligned}$$

Rys.4.17. Funkcje bazowe interpolacji Hermite'a

Przyjmując $x_0=0$ mamy $L=x_1$ i wzory na funkcje bazowe interpolacji Hermite'a są w postaci

$$H_{1,0}(x) = 1 - 3\left(\frac{x}{L}\right)^2 + 2\left(\frac{x}{L}\right)^3 \qquad \hat{H}_{1,0}(x) = x\left(1 - \frac{x}{L}\right)^2 H_{1,1}(x) = 3\left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)^3 \qquad \hat{H}_{1,1}(x) = x\left(\left(\frac{x}{L}\right)^2 - \frac{x}{L}\right)$$
(4.37)

Na rys. 4.17 pokazano wykresy tych funkcji.

Przykład 4.10. Obliczyć wzorem interpolacyjnym Hermite'a f(1,5) dla danych z tabeli 4.3.

W tym przykładzie n=2i wielomian interpolacyjny jest stopni
a $2n+1=2\cdot 2+1=5$ wyrażony wzorem

$$H_{5}(x) = \sum_{j=0}^{2} H_{2,j}(x) f_{j} + \sum_{j=0}^{2} \hat{H}_{2,j}(x) f'_{j}$$

$$k \quad x_{k} \quad f(x_{0}) \quad f'(x_{k})$$

$$0 \quad 1,3 \quad 0,620 \quad -0,522$$

$$1 \quad 1,6 \quad 0,455 \quad -0,570$$

$$2 \quad 1,9 \quad 0,282 \quad -0,581$$

Tabela 4.3. Dane do przykładu 4.10

Obliczamy kolejno

$$N_{2,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}$$
$$N_{2,0}'(x) = \frac{100}{9}x - \frac{175}{9}$$
$$N_{2,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = -\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}$$
$$N_{2,1}'(x) = -\frac{200}{9}x + \frac{320}{9}$$

$$\begin{split} N_{2,2}(x) &= \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9} \\ N_{2,2}'(x) &= \frac{100}{9}x - \frac{145}{9} \\ H_{2,0}(x) &= \left[1 - 2(x-1,3) \cdot (-5)\right] \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2 \\ &= (10x-12) \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2 \\ H_{2,1}(x) &= 1 \cdot \left(-\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}\right)^2 \\ H_{2,2}(x) &= 10 \cdot (2-x) \left(\frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}\right)^2 \\ \hat{H}_{2,0}(x) &= (x-1,3) \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2 \\ \hat{H}_{2,1}(x) &= (x-1,6) \left(-\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}\right)^2 \\ \hat{H}_{2,2}(x) &= (x-1,9) \left(\frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}\right)^2 \\ H_{5}(x) &= 0,620H_{2,0}(x) + 0,455H_{2,1}(x) + 0,282H_{2,2}(x) - 0,522\hat{H}_{2,0}(x) - 0,570\hat{H}_{2,1}(x) - 0,581\hat{H}_{2,2}(x) \\ H_{5}(1,5) &= 0,620 \cdot \left(\frac{4}{27}\right) + 0,455 \cdot \left(\frac{64}{81}\right) + 0,282 \cdot \left(\frac{5}{81}\right) - 0,522 \cdot \left(\frac{4}{405}\right) - 0,570 \cdot \left(-\frac{32}{405}\right) - 0,581 \cdot \left(-\frac{2}{405}\right) = 0,512 \end{split}$$

Interpolację Hermite'a można też stosować w wersji sklejanej. Funkcje interpolacyjne mogą być w ogólności sklejane z wielomianów różnych stopni w podprzedziałach na jakie podzielimy przedział [a, b] będący dziedziną funkcji f(x). Szczegóły takiej interpolacji funkcjami sklejanymi (ang. *spline interpolation functions*) można znaleźć w podręcznikach z metod numerycznych.