Przykład rozwiązania tarczy w zakresie sprężysto-plastycznym

Piotr Mika

Maj, 2014

1. Przykład – rozwiązanie tarczy programem ABAQUS

Celem zadania jest przeprowadzenie analizy sprężysto-plastycznej tarczy, której rozwiązanie sprężyste zostało szczegółowo opisane w manualu "Wprowadzenie do programu ABAQUS oraz przykład rozwiązania tarczy". Wymiary oraz stałe materiałowe konstrukcji dla przypomnienia zamieszczono poniżej, na rysunku 1.

Będziemy modyfikować przygotowany wcześniej model sprężysty.

Rysunek 1 Geometria tarczy oraz stałe materiałowe

1.1.Preprocessing

Kolejne kroki, prowadzące do wykonania obliczeń w programie ABAQUS, opisano w tabeli na następnych stronach.

W celu określenia obciążenia, przy którym nastąpi pierwsze uplastycznienie, zaczniemy od wykonania obliczeń w zakresie sprężystym dla obciążenia jednostkowego. Obciążenie zmieniamy, rozwijając opcję <i>Loads</i> w pierwszym, istniejącym już kroku <i>(Step-1),</i> następnie po kliknięciu prawym klawiszem w nazwę obciążenia (<i>Load-1</i>) i wywołaniu menu, wskazujemy polecenie <i>Edit,</i> które wyświetla okno umożliwiające zmianę wartości.	• O ^A Steps (2) • Decizenie • Decizenie • Decizenie • Field Output Requests (1) • Decizenie • Decizenie • Decizenie • Decizenie • Decizenie • Decizenie • Decizenie • Decizenie <	turbation) Create
W dolnej części <i>model tree</i> klikamy w <i>Jobs,</i> wskazujemy nazwę zadania i uruchamiamy obliczenia (polecenie <i>Submit</i>). Po przejściu do modułu <i>Visualization</i> wyświetlimy naprężenia zastępcze Misesa.	Switch Context Ctrl+Space Edit Copy Rename Delete Write Input Data Check Submit Continue Monitor Results Kill Export	
Odczyt maksymalnych wartości naprężeń Misesa, uzyskanych przy założeniu jednostkowego obciążenia, pozwala na zasadzie proporcji określić wartość obciążenia, które spowoduje uplastycznienie materiału. W naszym przypadku (warunek plastyczności HMH) 1800/5.426 ≅ 331.74 – przekroczenie takiego obciążenia spowoduje uplastycznienie materiału. WSKAZÓWKA: Klikając ikonę i wybierając kartę Limits, możemy wyświetlić lokalizację ekstremalnych wartości wyświetlanej zmiennej	S, Mises Max: +5.426e+000 (Avg: 75%) +5.426e+00 +4.985e+00 +3.217e+00 +2.334e+00 +1.450e+00 +1.450e+00 +1.450e+00 +1.246e-01 Max: +5.426e+00 Elem: TARCZA-1.10 Node: 11 Min: +1.246e-01 Elem: TARCZA-1.41 Node: 56	
Dalsze obliczenia będą przeprowadzone w dwu kolejnych krokach: – sprężystym, przy przyjęciu obciążenia, które pozwoli znaleźć się możliwie blisko uplastycznienia oraz - plastycznym – przy założeniu znacznie większego obciążenia		

Przyjęcie danych dla wzmocnienia plastycznego	σ,
Korzystamy z formuły $\sigma_{y_1} = \sigma_y + \kappa_1 * H$, przy czym <i>H</i> przyjmujemy na poziomie 0 01* <i>F</i>	О _{у1} н
natomiast κ_1 na poziomie 0.1.	
Przyjęte ostatecznie dane materiałowe są podane na następnym rysunku.	
	$\kappa_0 \qquad \kappa_1 \qquad \epsilon_{pl}$
DEFINICJA MATERIAŁU – MODYFIKACJA	Edit Material
	Name: Material-1
Rozwijamy <i>Menu Tree/Materials klikając w</i>	Description: Edit
"plus".	Material Behaviors
Wskazujemy prawym klawiszem myszy	Elastic
nazwę naszego materiału i po wybraniu Edit,	FIGUL
w karcie Mechanical /Plasticity/Plastic	
definiujemy granicę plastyczności - Yield	General Mechanical Ihermal Other Delete
Stress=1800, Plastic Strain=0 (miara	Plastic
odkształceń plastycznych) oraz dodajemy	Hardening: Isotropic Suboptions
dodatkowy wiersz (klawiszem enter) podając	Use strain-rate-dependent data
wartości 27 000 dla <i>Yield Stress</i> i 0.1 dla	Use temperature-dependent data
Plastic Strain.	Data
	Yield Plastic Stress Strain
	1 1800 0
	2 2/000 0.1
ZDEFINIOWANIE KROKÓW	Create Step
OBLICZENIOWYCH	- Section Name: plastycznosc
	Con Insert new step after
W celu przeprowadzenia analizy nieliniowej,	Retrials (Initial
musímy stworzyć kolejne kroki oblíczeniowe.	Material-1 Step-1
Istriciony krok (Stop 1) Linear parturbation (Sections (1
Static Linear porturbation porturbation/	Profiles
	Assembly
wyznaczyc rozwiązanie przy założeniu materiału liniewo spreżystego. Rozwiązanie	
to można wykorzystać do oszacowania	E Feature
noziomu obciażenia, które doprowadzi do	Sets Dynamic, Implicit
unlastycznienia	Surface Geostatic
	and Engine Mass diffusion
Dwukrotnie klikamy w Sten – <i>Create Sten</i>	Steps (2) Soils
Procedure Type: General rodzai analizy:] 0− Initial Static, General
Static General	1 Inter Static, Riks
	BCs Visco 🔻
	□ of [®] Step-1 Continue Cancel

W karcie <i>Incrementation</i> możemy określać ręcznie wielkość kroku plastycznego. W tym przypadku (ponieważ mamy pozostać w zakresie sprężystym) przyjmiemy jeden przyrost obciążenia (bez iteracji)	Image: Edit Step Name: Step-2 Type: Static, General Basic Incrementation Other Type: Image: Im
ZADANIE OBCIĄŻENIA	Edit Load
Rozwijamy krok <i>Step-2</i> , klikamy w <i>Loads</i> , po wyświetleniu okienka <i>Create load</i> wybieramy krok, w którym ma być przyłożone obciążenie (<i>Step-2</i>), kategorię <i>Mechanical</i> , typ <i>Pressure</i> i <i>Continue</i> . Następnie należy wskazać krawędź, która	Name: Load-2 Type: Pressure Step: Step-2 (Static, General) Region: (Picked) Distribution: Uniform Create Magnitude: 315
będzie obciążona, zatwierdzić <i>Done</i> oraz podać wartość 315 KN/m (wartość nieco mniejsza niż wyliczona z proporcji)	OK Cancel
Po uruchomieniu zadania i przejsciu do wyników, wyświetlamy naprężenia Misesa (maksymalna wartość jest niższa od granicy plastyczności)	(Avg: 75%) (Avg: 75%) +1:570e+03 +1:570e+03 +1:53e+03 +1:53e+03 +1:53e+03 +1:53e+03 +1:53e+02 +6:743e+02 +5:558e+02 +1:568e+02 +1:7
Zerowe wartości plastycznego odkształcenia zastępczego, oznaczonego w programie ABAQUS symbolem <i>PEEQ</i> świadczą o braku uplastycznienia.	
	FEQ (Nor: 75/b) (Nor: 75/b) (Nor: 70,000±00) (Nor: 70,000±00) (Nor: 10,000±00) (Nor: 10,000±00)

przemieszczenie. Zaznaczając opcję Highlight	
selection in viewport możemy zobaczyć	
miejsce w naszym modelu, gdzie te wartości	
są osiągnięte.	

Wyniki kontrolne

Rysunki dwuwymiarowe

Korzystając z menu *Tools/XY data – Create*, można wygenerować rysunki ilustrujące zmianę podczas analizy wybranych wielkości, np. poszczególnych składowych tensora naprężeń. Można tu wskazać jako źródło plik *ODB Field Output*. W karcie *Variables* wybieramy zmienną i pozycję (element, węzeł,...), natomiast w karcie Elements/Nodes podajemy konkretny element lub węzeł – najwydogniej jest wskazać myszką na ekranie – opcja *Pick from viewport*.

Po zapamiętaniu wartości naprężeń i odkształceń w wybranym punkcie konstrukcji, można użyć opcji *Tools/XY data – create/Operate on XY data* i operatora *combine(X,X)* w celu uzyskania wzajemnej zależności dwu zmiennych np. ε – σ (rysunek obok).

Rysunek 2 Zmiana przemieszczenia w prawym dolnym narożu tarczy

