An example of panel solution in the elastic-plastic regime

Piotr Mika

May, 2014

1. Example - solution of the panel with ABAQUS program

The purpose is to analyze the elastic-plastic panel. The elastic solution of this panel is described in detail in the manual "Getting Started with ABAQUS and example solutions of panel". The dimensions and material data are given below, in Figure 1.

We are going to modify the previously prepared elastic model.

Fig 1 Panel geometry and material constants

1.1.Preprocessing

The steps leading to the calculation in ABAQUS program are described in the table on the following pages.

In order to determine the load at yielding initiation, we start with the calculation of the elastic regime with the unit load. The load can be changed by developing <i>Loads</i> option in the first step (<i>Step-1</i>) and clicking on the name of the load (<i>load-1</i>). From the menu select <i>Edit</i> which opens a window where the value can be changed.	oGene Steps (2) image: Constraint of the second
At the bottom of the model tree, click on Jobs, indicate the name of the task and run the calculations (click <i>Submit</i>). After switching to the <i>Visualization module</i> von Mises stress can be displayed.	Switch Context Ctrl+Space Edit Copy Rename Delete Del Write Input Data Check Submit Continue Monitor Results Kill Event
Reading the maximum Mises stress values obtained by assuming the unit load allows for determining the value of the load that causes yielding of the material. In our case (HMH yield criterion) 1800/5.426 ≅ 331.74 - exceeding that value causes yielding of the material. TIP: By clicking on the icon and selecting the <i>Limits</i> tab, the location of the extremal value of the displayed variable is depicted. Further calculations will be carried out in	Export S, Mises Max: +5.426e+000 (Avg: 75%) +5.426e+00 +4.543e+00 +4.543e+00 +2.33e+00 +2.33e+00 +1.450e+00 +1.450e+00 +1.450e+00 Elem: TARCZA-1.10 Node: 11 Min: +1.246e-01 Elem: TARCZA-1.41 Node: 56
two steps: - Elastic, assuming the load, that generates the stresses close to yielding state and - Plastic - assuming a much greater load	

The <i>incrementation</i> card allows for manual specification of plastic step increment. In this case, as calculations are to stay the elastic range, one load increment without iteration is assumed.	Lidit Step Name: Step-2 Type: Static, General Basic Incrementation Other Type: Image: Automatic Image: Streed Maximum number of increments: Image: Imag
LOAD Develop step <i>Step-2</i> , click the <i>Loads</i> . In <i>create load</i> window select step, in which the load is to be applied (<i>Step-2</i>), category <i>Mechanical</i> , type <i>Pressure</i> and select <i>Continue</i> . Then choose the edge that will be loaded, click <i>Done</i> and enter the value 315 KN/m (slightly less than the value calculated from the ratio)	Edit Load Name: Load-2 Type: Pressure Step: Step-2 (Static, General) Region: (Picked) Distribution: Uniform Create Magnitude: 315
When you run a task and go to the results, display Mises stress (maximum value is lower than the yield stress) Zero values equivalent plastic strain, marked in the ABAQUS as <i>PEEQ</i> prove that there is no yielding.	S, Miss Max: +1.709+003 (Avg: 75%) +1.5709+003 +1.5709+003 +1.5709+003 +1.539+002 +1.539+002 +3.539+002 +4.5598+102 +4.5598+102 +1.784+002 Harris Asc24-101 Max: +1.709+403 Elem: TARCZA-1.41 Node: 56
	FEEQ (Avg: 75%) 100000000 1000000000 1000000000 10000000

PLASTIC STEP	E i Edit Step
To create another step of calculation: double click on the <i>Step - Create Step</i> , <i>Procedure Type: General, the type of</i> <i>analysis: Static, General.</i> In <i>incrementation tab</i> , we assume that the load is applied in 20 steps of 0.05 s	Name: Step-3 Type: Stetic, General Basic Incrementation Other Type: Automatic @ Fixed Maximum number of increments: 20 Increment size: 0.04
By selecting <i>step-3</i> it is noted that the assumed in the Step-2 load has been moved there. Increase it twice to 630 KN/m	 BCs (1) Predefined Fields Load Cases Coad-2 Step-3 Key Field Output Requests (1) ALE Adaptive Mesh Constraints Interactions Loads (1) Coad-2 (Propagated) BCs (1) Predefined Fields Load Cases Field Output Requests (2) History Output Requests (2) History Output Requests (2)
COMPUTING Using the menu Jobs, run calculations (click Submit). Running the Monitor option in the manager of calculations, we can track the number of iterations in each increment within a calculation step. The first column indicates the step number - in this case, we have three steps, and the second column gives the number of increments. Column 6 Total Iter gives the number of iterations needed to achieve a balance in each of the increments. Last but one column gives the total time, while the last one time increment.	Image: Properties Status: Completed Step: pizs: Status: Completed Image: Properties Status: Completed 1 1 1 0 1 1 0 222e-16 222e-16 222e-16 3 1 1 0 1 1 1 1 1 3 1 0 1 1 1 1 1 3 1 0 1 1 1 1 1 1 3 1 0 1 1 1.00 0.05 0.05 3 3 1 0 1 1 1.15 0.15 0.05 3 5 1 0 1 1 1.25 0.25 0.05 3 6 1 0 1 1 1.45 0.45 0.05 3 9 1 0 1 1 1.55 0.55 0.05 3
CONVERGENCE OF ITERATION If the calculations are completed, the <i>Visualization module</i> and the <i>Job Diagnostic</i> from <i>Tools</i> menu can be started. When you select <i>Attempt</i> in the <i>Summary</i> tab is selected, basic information about the number of iterations is obtained. In the model tree on the left side of the window, go to the iteration. <i>Summary</i> tab is used to check whether the iteration process is convergent, and if not, the reason why the iteration does not converge can be read from the <i>residuals</i> card. The max residual force, the increase in displacement and the	Job Diagnostics Job History Job Step 1 Step 2 Increment 1 Attempt 1 Reaction 1 Increment 3 Increment 4 Increment 5 Increment 7 Increment 8 Increment 9 Increment 10 Increment 11 Increment 2 Increment 3 Increment 4 Increment 7 Increment 8 Increment 11 Increment 12 Increment 13

Control results

