An example of panel solution in the elastic-plastic regime

Piotr Mika

May, 2014

1. Example - solution of the panel with ABAQUS program

The purpose is to analyze the elastic-plastic panel. The elastic solution of this panel is described in detail in the manual "Getting Started with ABAQUS and example solutions of panel". The dimensions and material data are given below, in Figure 1.

We are going to modify the previously prepared elastic model.

Fig 1 Panel geometry and material constants

1.1.Preprocessing

The steps leading to the calculation in ABAQUS program are described in the table on the following pages.

ASSUMING THE DATA FOR PLASTIC HARDENING

The formula $\sigma_{y 1}=\sigma_{y}+\kappa_{l} * H$ is used, where H is accepted about $0.01^{*} E$, and κ_{l} about 0.1 .

Final material data applied in calculations are given in the following figure.
DEFINITION OF MATERIAL - MODIFICATION

In Menu Tree / Materials click the "plus". Select the name of our material and click the Edit tab in Mechanical/Plasticity/Plastic. Assume: Yield Stress = 1800, Plastic Strain = 0 (a measure of plastic deformation) and add an extra line (by pressing enter).
Then give the value of 27000 for Yield Stress and 0.1 for Plastic Strain.

PLASTIC STEP	$\square 1$ Edit step $^{\text {a }}$
To create another step of calculation: double click on the Step - Create Step, Procedure Type: General, the type of analysis: Static, General. In incrementation tab, we assume that the load is applied in 20 steps of 0.05 s	Name: Step-3 Type: Static, General Basic Incrementation Other Type: Automatic (O) Fixed Maximum number of increments: 20 Increment size: 0.05
By selecting step-3 it is noted that the assumed in the Step-2 load has been moved there. Increase it twice to $630 \mathrm{KN} / \mathrm{m}$	
COMPUTING Using the menu Jobs, run calculations (click Submit). Running the Monitor option in the manager of calculations, we can track the number of iterations in each increment within a calculation step. The first column indicates the step number in this case, we have three steps, and the second column gives the number of increments. Column 6 Total Iter gives the number of iterations needed to achieve a balance in each of the increments. Last but one column gives the total time, while the last one time increment.	
CONVERGENCE OF ITERATION If the calculations are completed, the Visualization module and the Job Diagnostic from Tools menu can be started. When you select Attempt in the Summary tab is selected, basic information about the number of iterations is obtained. In the model tree on the left side of the window, go to the iteration. Summary tab is used to check whether the iteration process is convergent, and if not, the reason why the iteration does not converge can be read from the residuals card. The max residual force, the increase in displacement and the	

max displacement correction factor are given there.
Where these values are achieved in the modeled structure can be seen by marking the box Highlight selection in the viewport.

Control results

To check the results display the contour maps of Mises stress values, (menu Plot/Contours; the selection of variables and step is possible in - Results/Field Output).
The figure descriptions indicate the step and the number of the increment.

By using the icons:

the results in different increments of time can be analyzed.

The yield strength is reached when a non-zero value of plastic deformation, marked in the ABAQUS as PEEQ symbol, is reached.

The next figure shows PEEQ achieved in the last increment (no. 20 - the current number is given in the description below the picture)

