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Stationary heat flow in 3D

Fundamental unknown - temperature T’

m Fourier's law of heat conduction
q=-DVT

m heat flux density vector
a={t qy ¢} W/m?]
m temperature gradient

gradT:VT:{g—g g—g %—Z} [K/m]

9
3896 m heat conduction matrix
V= 2 D = {ki;} [W/(mK)]
9z
q VT Flux density grows with temperature gradient.
\/ Heat flows from higher to lower temperature.
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Heat energy balance

Heat generated equal to heat flowing out

/de:/qndS vV
1% S

f — heat source density — energy supplied to the body
per unit volume and time [W/m3]

Using Green-Gauss-Ostrogradsky theorem about integration by parts

/qndS:/andS:/ diquV:/ 94 + 4y + 04 dv
g S v v | Ox oy 0z

/de:/VquV VV = Vig=f VxeV
1% 1%
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Heat flow equations

Heat conduction equation (strong formulation)

VIDVT)+f=0 vxeV

+ boundary conditions
o =9'n=7g on Sg— natural b.c. (Neumann)

A~

T=T on St— essential b.c. (Dirichlet)

Conduction matrix for isotropic materials D = kI

FPT °T T f

0 — Poisson equation

Ox? + Oy? + 072 + k

For isotropic materials without heat source
0*T N 0*T N o0%T 7
or2  Oy? 022

— Laplace equation

G
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Stationary heat flow in 3D

Weighted residual method

/ w (VHDVT)+ f)dV =0 Vw #0
\%

/ wVT(DVT)dV + / wfdV =0
174 174

Weak formulation

- /V (Vw)TDVTAV + /

S

=
w(DVT) ndS+/wde:O
Vv
Gn

—/ (Vw)TDVTdV — / wqtn dS—l—/ wfdV =0
v S v

/(Vw)TDVTdV:—/ wqdS — W Gn dS+/ wfdV  Yw
1% Sq A ST K Vv
natural b.c. secondary unknown
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Stationary heat flow in 3D

Strong formulation

VIDVT)+ f=0 VxeV

+ boundary conditions
gn = an = a\ on Sq

A~

T=T on St

Weak formulation

/ (Vw)TDVTAV = —/ wqdS — wq,dS +/ wfdV Yw #0
v Sq i v

+ boundary condition R
T=T onSt
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Stationary heat flow in 3D

Set of FE equations

T = N® — approximated temperature function

N - shape function vector ((global approximation)

©® — nodal temperature (dof) vector

VT = BO® — approximated temperature gradient function

B = VN - shape function derivative matrix

w =wTNT — approximation of weight function (Vw = Bw)

/ (Vw)TDVTAV = — / wgdS — | wg,dS + / wfdV Vw?
1% S St 1%

KO =f +f

K:/ BTDBdV, fb:—/ NTgdS— | NTgq,ds, f:/ NTfav
1% = St 1%
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Selection of approximation functions

Fundamental steps in FE procedure

Build a strong formulation of a problem
Convert the formulation into a weak format
Select approximation of unknown function

Select weighting function (usually Galerkin approach)
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Selection of approximation functions in 1D

1 Strong formulation

d Ade +f=0
dx dx B I
+ boundary conditions -
¢z =q atzy (eg zq4=0)

A~

T=T at 7 (eg. zp =1)

2 Conversion into weak formulation

L dw dT
— | Ak— = (wA q— (wAg,
/de(kdx)dx (wA)| 7 (wAg)

x=0
+ b.c.

A~

T=T at 1 (e.g. xzp =1)
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Selection of approximation functions in

T
3 Selection of approximation functions T;{-¢
T¢(z) = a1 + agr = Pa” s e T T
® =1 z], ae:{all |
0%
T¢(x) = N¢(2°)T; + N¢(2°)T; = N°©° . N (x)
e e[ .e e[ .e e T; > x°
N = V@) N, e = | 7 | o
Nje(xe)
dT* dIN¢ dN¢ dN¥¢ 1
=B°®°, B°= = . J . €
dze ’ dxe dze dze -z
0° ¢
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Selection of approximation functions in 1D

T
3 Selection of approximation functions %}
;
k
T¢(x) = a1 + ooz + azz® = Baf .
a1
& =[1 27, a = | a
(0% 1 Nle(xe)
Te(z) = N (z°)T; + N&(a°)Tj + NE(z°) T 0 ac re v
_ e e
= N°O T. )
N® = [Ni(2°) Nj(z°) Ng ()], ©° = | T; A—'Jx
Ty 0° x5 I°
e e @ e e Nkez(a:e)
dT dN dNf dN$ dNg f 1
=B°®°, B°= = : J e
dze ’ dze s ali® ~_ 7
0°  zj I°
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Selection of approximation functions in 2D

1 Strong formulation

VEDVT)+f=0 vxecA

+ boundary conditions

qn:an:Zj onI'y r

A~

T =T on 'y Lr

2 Conversion into weak formulation (h - configuration thickness)

/A (Vw)"™DhVTAA = — /

Lq

th]\dF—/ whqndF+/ whfdA
I A

+ boundary condition n
T=1T only
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Selection of approximation functions in 2D

3 Selection of approximation functions
Three-node element

T(z,y) = a1 + aox + azy = Pa’

aq
® =[1zyl, a® = | a
Qs
T¢(z,y) = N (% y°)T; + N; (2%, y°) T+
+ Ni (2%, y°)T, = N°O°

N¢ = [Nie(xe’ye) Nje<xe7ye) le(xeﬂye)]v
T
@ = | T
Tk

~
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Selection of approximation functions in 2D

) —— _ e.g. for N;(z¢, y°)

3 Selection of approximation functions Ni(z8,45) = 1
(28, yl) =

Three-node element N(xze yze) —0
\Fgrd9) —

N° = (Vg (2*,y°) Nj(a©,5°) Ng(a*,y) Ni<xz,yz> 0

Ni(z¢,y°) Nj(z¢,y°) z€,y°)

v

Determination of shape functions N;(z¢,y¢) = aq; + ag;x® + asy°

LTiYk —TkYj

1 i Yi Q14 1 Q1 = 2PA
— — YT Yk
1 xj yj a9, = 0 —> (9; = 2PA
2 T —T4
1 zp Yk a3 0 Qg = 2PAJ

KTl
oY

/I

Ay
Computational Methods, 2020 © J.Pamin ‘_. ‘4

Selection of approximation functions in 2D

Pascal triangle | — three-node element
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Selection of approximation functions in 2D

Convergence conditions - requirements for FE approximation

m completeness — approximation must be able to represent a constant
field and a constant field gradient

m continuity (conforming FE) — approximation must be continuous
along interelement edges
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Selection of approximation functions in 2D

3 Selection of approximation functions
Four-node element

T*(x,y) = of + ajz + afy + afey = Bac
B=[lzyay, a' =

T(x,y) = Ni(z°,y°)T; + NS (x°,y°)T;+
+ N;:’({Ee, ye)Tk + Nle(xe, ye)Tl = N°O°

N = [N7(2€,y°) Nj (2, y°) N (e, y°) Nf (2%, y°)]
©° = {T; T; Ty, Ti}
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Selection of approximation functions in 2D

e.g. for N;(z°, y°)
3 Selection of approximation functions Ni(z5,y;) =1
Four-node element (rectangular) Ni(z,y5) =0

© e(.e e ef..e e e(.e e el e e Ni(zk,yx) =0
N :[Nz(x7y)Nj(x7y)Nk(x7y)Nl(x7y )] N@(mf yzs):()

__ (e—an)(y—w)
i ab




Selection of approximation functions in 3D

1 Strong formulation

VIDVT)+f=0 V¥xeV

+ boundary conditions
=9 n=4q on S

A~

T=T on St

2 Conversion to weak formulation

/ (Vw)TDVTAV = — / wgds — / wgndS + / wfdV
% e St v

+ boundary condition

A~

T=1T on ST
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Selection of approximation functions in 3D

3 Selection of approximation functions
Tetrahedral element

T¢(z,y,2) = af + a5z + a5y + a5z

T¢(z,y,2) = Nj(z°,9°, 2°)T; + N; (2%, ¢°, 2°)T;
+ le(xe’ ye, Ze)Tk: + Nle(il?e, ye, Ze)ﬂ
— Ne(_)e

Hexahedral element

T¢(z,y,2) = af + a5z + afy + agz+

+ oty + agyz + aszz + agryz
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