FEM for continuum statics

Piotr Pluciński e-mail: Piotr.Plucinski@pk.edu.pl

Jerzy Pamin

e-mail: Jerzy.Pamin@pk.edu.pl

Chair for Computational Engineering

Faculty of Civil Engineering, Cracow University of Technology

URL: www.CCE.pk.edu.pl

2 FEM discretization

3 Plane stress

Body force density vector
$$[N/m^3]$$

$$\rho \mathbf{b} = \rho \begin{bmatrix} 0\\ 0\\ -g \end{bmatrix}$$

Body force density ve	ctor [N/m ³]
$\rho \mathbf{b} = \rho$	$\begin{bmatrix} 0\\0\\-g \end{bmatrix}$

Traction vector [N/r	m ²]
$\mathbf{t} =$	$\begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$

Body force density vector
$$[N/m^3]$$

 $ho {f b} =
ho \left[egin{array}{c} 0 \\ 0 \\ -g \end{array}
ight]$

Traction vector $[N/m^2]$	
$\mathbf{t} =$	$\left[\begin{array}{c}t_x\\t_y\\t_z\end{array}\right]$

Displacement vector, strain tensor, stress tensor (Voigt's notation)

$$\mathbf{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}, \ \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{xy} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{xz} & \epsilon_{yz} & \epsilon_{zz} \end{bmatrix} \rightarrow \begin{bmatrix} \epsilon_x \\ \epsilon_y \\ \epsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}, \ \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix} \rightarrow \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$

Equilibrium equations for a body

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$

Equilibrium equations for a body

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$

Static boundary conditions

 $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$

where σ – stress tensor

Equilibrium equations for a body

$$\int_{S} \mathbf{t} \mathrm{d}S + \int_{V} \rho \mathbf{b} \mathrm{d}V = 0$$

Static boundary conditions

 $t = \sigma n$

where σ – stress tensor

Using Green–Gauss–Ostrogradsky theorem

$$\int_{S} \boldsymbol{\sigma} \mathbf{n} dS = \int_{V} \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} dV \qquad \text{where } \mathbf{L} - \text{differential operator matrix}$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w\equiv \delta {\bf u}$ – kinematically admissible displacement variation

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w \equiv \delta \mathbf{u}$ – kinematically admissible displacement variation (complying with kinematic b.cs)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{n} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathrm{b} \mathrm{d}V = 0$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w \equiv \delta \mathbf{u}$ – kinematically admissible displacement variation (complying with kinematic b.cs)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathbf{n} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathrm{b} \mathrm{d}V = 0$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w \equiv \delta \mathbf{u}$ – kinematically admissible displacement variation (complying with kinematic b.cs)

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$- \int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V + \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathrm{b} \mathrm{d}V = 0$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w \equiv \delta \mathbf{u}$ – kinematically admissible displacement variation – it is virtual work principle

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$
$$\int_{V} (\mathbf{L} \delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d}V = \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d}S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d}V$$

Navier's equations

$$\int_{V} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \iff \mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} = 0 \quad \forall P \in V$$
$$\sigma_{ij,j} + \rho b_{i} = 0$$

Weak formulation – weighting function $w \equiv \delta \mathbf{u}$ – kinematically admissible displacement variation – it is virtual work principle

$$\int_{V} (\delta \mathbf{u})^{\mathrm{T}} \left(\mathbf{L}^{\mathrm{T}} \boldsymbol{\sigma} + \rho \mathbf{b} \right) \mathrm{d}V = 0 \quad \forall \delta \mathbf{u}$$

$$\int_{V} (\mathbf{L}\delta \mathbf{u})^{\mathrm{T}} \boldsymbol{\sigma} \mathrm{d} V = \int_{S} (\delta \mathbf{u})^{\mathrm{T}} \mathbf{t} \mathrm{d} S + \int_{V} (\delta \mathbf{u})^{\mathrm{T}} \rho \mathbf{b} \mathrm{d} V$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
work of internal forces work of external forces

FEM discretization (n=NNE, N=NDOF, E=NE)

Displacement field approximation

$$\mathbf{u}^{eh} = \sum_{i=1}^{n} N_{i}^{e}(\xi, \eta, \zeta) \mathbf{d}_{i}^{e} = \mathbf{N}^{e} \mathbf{d}^{e}$$

$$\mathbf{N}^{e}_{[3 \times 3n]} = \begin{bmatrix} N_{1}^{e} & 0 & 0 & | & \dots & | & N_{n}^{e} & 0 & 0 \\ 0 & N_{1}^{e} & 0 & | & \dots & | & 0 & N_{n}^{e} & 0 \\ 0 & 0 & N_{1}^{e} & | & \dots & | & 0 & 0 & N_{n}^{e} \end{bmatrix} \quad \mathbf{d}^{e}_{[3n \times 1]} = \begin{bmatrix} \mathbf{d}_{1}^{e} \\ \dots \\ \mathbf{d}_{n}^{e} \end{bmatrix}$$

$$\mathbf{d}^{e}_{[3n \times 1]} = \mathbf{T}^{e} \quad \mathbf{d}_{n}^{e} = \mathbf{T}^{e} \quad \mathbf{d}_{n}^{e} = \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} = \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} = \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} = \mathbf{d}_{n}^{e} \quad \mathbf{d}_{n}^{e} \quad$$

 $\mathbf{T}^{e} = \mathbf{T}^{e} \mathbf{B}^{e}$ – transformation matrix which defines topology (\mathbf{B}^{e}) and directional cosines of angles between the axes of global and local coordinate set (\mathbf{T}^{e})

Equilibrium equation ($ho \mathbf{b}^e = \mathbf{f}^e$ – body force vector)

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\begin{split} &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \\ &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \end{split}$$

$$\begin{split} &\sum_{e=1}^{E} \left\{ \int_{V^{e}} (\mathbf{L}^{e} \delta \mathbf{u}^{e})^{\mathrm{T}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} (\delta \mathbf{u}^{e})^{\mathrm{T}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} (\delta \mathbf{u}^{e})^{\mathrm{T}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0 \\ &\sum_{e=1}^{E} \left\{ \int_{V^{e}} (\mathbf{\underline{L}^{e} N^{e}} \delta \mathbf{d}^{e})^{\mathrm{T}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} (\mathbf{N}^{e} \delta \mathbf{d}^{e})^{\mathrm{T}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} (\mathbf{N}^{e} \delta \mathbf{d}^{e})^{\mathrm{T}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0 \end{split}$$

$$\begin{split} &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \\ &\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0 \end{split}$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\delta \mathbf{d}^{e})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

Equilibrium equation

 $\sum_{e=1} \left(\int_{V^e} \right)$

e=1

 $E \mathbf{T}^e \delta \mathbf{d}$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$
$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

 $\sum_{e=1}^{e=\delta \mathbf{d}} \left\{ \int_{Ve} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{Se} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{Ve} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$

J_{Se}

Computational Methods, 2020 © J.Pamin 🕅

JVe

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d}V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d}S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d}V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$(\delta \mathbf{d})^{\mathrm{T}} \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\frac{(\delta \mathbf{d})^{\mathrm{T}}}{\forall \delta \mathbf{d}} \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

Equilibrium equation

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Equilibrium equation

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{L}^e \delta \mathbf{u}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\delta \mathbf{u}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} \left\{ \int_{V^e} (\mathbf{B}^e \delta \mathbf{d}^e)^{\mathrm{T}} \boldsymbol{\sigma}^e \mathrm{d} V^e - \int_{S^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{t}^e \mathrm{d} S^e - \int_{V^e} (\mathbf{N}^e \delta \mathbf{d}^e)^{\mathrm{T}} \mathbf{f}^e \mathrm{d} V^e \right\} = 0$$

$$\sum_{e=1}^{E} (\mathbf{T}^{e} \delta \mathbf{d})^{\mathrm{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} - \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} - \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\} = 0$$

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

internal forces

external forces

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $oldsymbol{\sigma} = \mathbf{D}oldsymbol{arepsilon}$ linear kinematic relation: $oldsymbol{arepsilon} = \mathbf{L}\mathbf{u}$

$$\boldsymbol{\sigma}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon}$ linear kinematic relation: $\boldsymbol{\varepsilon} = \mathbf{L}\mathbf{u}$

$$\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}^e$$

$$\sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{V^e} \mathbf{B}^{e \operatorname{T}} \mathbf{D}^{e} \mathbf{B}^{e} \mathbf{T}^{e} \mathrm{d} \mathrm{d} V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{S^e} \mathbf{N}^{e \operatorname{T}} \mathbf{t}^{e} \mathrm{d} S^{e} + \int_{V^e} \mathbf{N}^{e \operatorname{T}} \mathbf{f}^{e} \mathrm{d} V^{e} \right\}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $\sigma = D \varepsilon$ linear kinematic relation: $\varepsilon = Lu$

$$\sigma^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}^e$$

$$\sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{V^{e}} \mathbf{B}^{e \operatorname{T}} \mathbf{D}^{e} \mathbf{B}^{e} \mathrm{d} V^{e} \right\} \mathbf{T}^{e} \mathrm{d} = \sum_{e=1}^{E} \mathbf{T}^{e \operatorname{T}} \left\{ \int_{S^{e}} \mathbf{N}^{e \operatorname{T}} \mathbf{t}^{e} \mathrm{d} S^{e} + \int_{V^{e}} \mathbf{N}^{e \operatorname{T}} \mathbf{f}^{e} \mathrm{d} V^{e} \right\}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon}$ linear kinematic relation: $\boldsymbol{\varepsilon} = \mathbf{L}\mathbf{u}$

$$\boldsymbol{\sigma}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{K}}^{e} \mathbf{T}^{e} \mathbf{d} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}_{\mathsf{b}}^{e} + \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}^{e}$$

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon}$ linear kinematic relation: $\boldsymbol{\varepsilon} = \mathbf{L}\mathbf{u}$

$$\boldsymbol{\sigma}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}^e$$

Equilibrium equation

$$\frac{\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{K}}^{e} \mathbf{T}^{e}}{\mathrm{K}} \mathbf{d} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}_{b}^{e} + \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \bar{\mathbf{p}}^{e}$$
K Pb P

Equilibrium equation of discretized structure

Equilibrium equation

$$\sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{V^{e}} \mathbf{B}^{e^{\mathrm{T}}} \boldsymbol{\sigma}^{e} \mathrm{d}V^{e} \right\} = \sum_{e=1}^{E} \mathbf{T}^{e^{\mathrm{T}}} \left\{ \int_{S^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} \mathrm{d}S^{e} + \int_{V^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{f}^{e} \mathrm{d}V^{e} \right\}$$

Consideration of kinamatic and constitutive equations

linear elasticity: $\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon}$ linear kinematic relation: $\boldsymbol{\varepsilon} = \mathbf{L}\mathbf{u}$

$$\boldsymbol{\sigma}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{u}^e = \mathbf{D}^e \mathbf{L}^e \mathbf{N}^e \mathbf{d}^e = \mathbf{D}^e \mathbf{B}^e \mathbf{T}^e \mathbf{d}$$

Equilibrium equation

$$\mathbf{Kd} = \mathbf{p}_{\mathsf{b}} + \mathbf{p}$$

Plane stress ($\sigma_z = 0$)

Displacement vector

$$\mathbf{u} = \{u(x,y), v(x,y)\}$$

Strain vector

$$\boldsymbol{\varepsilon} = \{\varepsilon_x, \varepsilon_y, \gamma_{xy}\}$$

Body force intensity vector

$$\mathbf{f} = \{f_x, f_y\}$$

Constitutive matrix

$$\mathbf{D} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

Stress vector

$$\boldsymbol{\sigma} = \{\sigma_x, \sigma_y, \tau_{xy}\}$$

Traction vector

$$\mathbf{t} = \{t_x, t_y\}$$

Differential operator matrix

 \mathbf{L}

$$= \begin{bmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}$$

Plane stress ($\sigma_z = 0$)

Stiffness matrix

$$\mathbf{k}^e = \int_{A^e} \mathbf{B}^{e\mathrm{T}} \mathbf{D}^e \mathbf{B}^e h^e \mathrm{d}A^e$$

$$A^e, h^e$$
 – FE area and thickness, resp.

Element loading vector

$$\mathbf{p}^e = \int_{A^e} \mathbf{N}^{e\mathrm{T}} \mathbf{f}^e h^e \mathrm{d}A^e$$

Boundary loading vector

$$\mathbf{p}_{\mathsf{b}}^{e} = \int_{\Gamma^{e}} \mathbf{N}^{e^{\mathrm{T}}} \mathbf{t}^{e} h^{e} \mathrm{d}\Gamma^{e}$$

Three-noded element

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \, \mathbf{d}^{e}$$
$$\mathbf{N}^{e}_{i} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} \end{bmatrix}, \, \mathbf{d}^{e}_{i}_{j}_{k} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \end{bmatrix}$$

Three-noded element

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \,\mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0\\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} \end{bmatrix}, \,\mathbf{d}^{e} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \end{bmatrix}$$

Four-noded element

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \,\mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} \end{bmatrix}$$
$$\mathbf{d}^{e} = \{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}\}$$

Four-noded element

$$\mathbf{u}^{e}(x,y) = \mathbf{N}^{e}(x,y) \mathbf{d}^{e}$$
$$\mathbf{N}^{e} = \begin{bmatrix} N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} & 0 \\ 0 & N_{i}^{e} & 0 & N_{j}^{e} & 0 & N_{k}^{e} & 0 & N_{l}^{e} \end{bmatrix}$$
$$\mathbf{d}^{e} = \{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}, d_{8}\}$$

Example Statics of a panel

Example Statics of a panel

Statics of a panel

Constitutive matrix

$$\mathbf{D} = \frac{18 \cdot 10^6}{1 - 0.25^2} \begin{bmatrix} 1 & 0.25 & 0\\ 0.25 & 1 & 0\\ 0 & 0 & \frac{1 - 0.25}{2} \end{bmatrix} \text{ [kPa]}$$

Statics of a panel

Constitutive matrix

$$\mathbf{D} = \frac{18 \cdot 10^6}{1 - 0.25^2} \begin{bmatrix} 1 & 0.25 & 0\\ 0.25 & 1 & 0\\ 0 & 0 & \frac{1 - 0.25}{2} \end{bmatrix} \text{ [kPa]}$$
$$\mathbf{D} = \begin{bmatrix} 19.2 & 4.8 & 0\\ 4.8 & 19.2 & 0\\ 0 & 0 & 7.2 \end{bmatrix} \cdot 10^6 \text{ [kPa]}$$

Statics of a panel

Shape functions – Element 1

$$\begin{split} N_i^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) &= \frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 2x^{(\mathrm{l})} - 4y^{(\mathrm{l})} + 8}{8}, \qquad N_k^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) = \frac{x^{(\mathrm{l})}y^{(\mathrm{l})}}{8} \\ N_j^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) &= -\frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 2x^{(\mathrm{l})}}{8}, \qquad N_l^1(x^{(\mathrm{l})},y^{(\mathrm{l})}) = -\frac{x^{(\mathrm{l})}y^{(\mathrm{l})} - 4y^{(\mathrm{l})}}{8} \\ \mathbf{N}^1 &= \begin{bmatrix} N_i^1 & 0 & N_j^1 & 0 & N_k^1 & 0 & N_l^1 & 0 \\ 0 & N_i^1 & 0 & N_j^1 & 0 & N_k^1 & 0 & N_l^1 \end{bmatrix} \end{split}$$

Statics of a panel

Matrix \mathbf{K} – Element 1

$$\mathbf{B}^{1}(x^{(1)},y^{(1)}) = \begin{bmatrix} \frac{y^{(1)}}{8} - \frac{1}{4} & 0 & \frac{1}{4} - \frac{y^{(1)}}{8} & 0 & \frac{y^{(1)}}{8} & 0 & -\frac{y^{(1)}}{8} & 0 \\ 0 & \frac{x^{(1)}}{8} - \frac{1}{2} & 0 & -\frac{x^{(1)}}{8} & 0 & \frac{x^{(1)}}{8} & 0 & \frac{1}{2} - \frac{x^{(1)}}{8} \\ \frac{x^{(1)}}{8} - \frac{1}{2} & \frac{y^{(1)}}{8} - \frac{1}{4} & -\frac{x^{(1)}}{8} & \frac{1}{4} - \frac{y^{(1)}}{8} & \frac{x^{(1)}}{8} & \frac{y^{(1)}}{8} & \frac{1}{2} - \frac{x^{(1)}}{8} & -\frac{y^{(1)}}{8} \end{bmatrix}$$

Statics of a panel

Matrix \mathbf{K} – Element 1

$$\mathbf{B}^{1}(x^{(1)}, y^{(1)}) = \begin{bmatrix} \frac{y^{(1)}}{8} - \frac{1}{4} & 0 & \frac{1}{4} - \frac{y^{(1)}}{8} & 0 & \frac{y^{(1)}}{8} & 0 & -\frac{y^{(1)}}{8} & 0 \\ 0 & \frac{x^{(1)}}{8} - \frac{1}{2} & 0 & -\frac{x^{(1)}}{8} & 0 & \frac{x^{(1)}}{8} & 0 & \frac{1}{2} - \frac{x^{(1)}}{8} \\ \frac{x^{(1)}}{8} - \frac{1}{2} & \frac{y^{(1)}}{8} - \frac{1}{4} & -\frac{x^{(1)}}{8} & \frac{1}{4} - \frac{y^{(1)}}{8} & \frac{x^{(1)}}{8} & \frac{y^{(1)}}{8} & \frac{1}{2} - \frac{x^{(1)}}{8} & -\frac{y^{(1)}}{8} \end{bmatrix}$$
$$\mathbf{K}^{1} = \int_{0}^{2} \int_{0}^{4} \mathbf{B}^{1^{\mathrm{T}}} \mathbf{D} \mathbf{B}^{1} h \, dx^{(1)} dy^{(1)} = \begin{bmatrix} 16 & 6 & -1.6 & -1.2 & -8 & -6 & -6.4 & 1.2 \\ 6 & 28 & 1.2 & 10.4 & -6 & -14 & -1.2 & -24.4 \\ -1.6 & 1.2 & 16 & -6 & -6.4 & -1.2 & -8 & 6 \\ -1.2 & 10.4 & -6 & 28 & 1.2 & -24.4 & 6 & -14 \\ -1.2 & 10.4 & -6 & 28 & 1.2 & 10.4 \\ -6.4 & -1.2 & -8 & 6 & -1.6 & 1.2 & 16 & -6 \\ 1.2 & -24.4 & 6 & -14 & -1.2 & 10.4 & -6 & 28 \end{bmatrix} \cdot 10^{5}$$

Statics of a panel

Shape functions – Element 2

$$\begin{split} N_i^2(x^{(2)}, y^{(2)}) &= \frac{2 - y^{(2)}}{2}, \qquad N_k^2(x^{(2)}, y^{(2)}) = \frac{y^{(2)} - x^{(2)}}{2} \\ N_j^2(x^{(2)}, y^{(2)}) &= \frac{x^{(2)}}{2} \\ \mathbf{N}^2 &= \begin{bmatrix} N_i^2 & 0 & N_j^2 & 0 & N_k^2 & 0 \\ 0 & N_i^2 & 0 & N_j^2 & 0 & N_k^2 \end{bmatrix} \end{split}$$

 $= d_A$

 $d_3 d_3^2 = d_5$

 $d_4^2 = d_6$

Statics of a panel

Matrix \mathbf{K} – Element 2

$$\mathbf{B}^{2}(x^{(2)}, y^{(2)}) = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Statics of a panel

Matrix \mathbf{K} – Element 2

$$\mathbf{B}^{2}(x^{(2)}, y^{(2)}) = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\mathbf{K}^{2} = \mathbf{B}^{2^{\mathrm{T}}} \mathbf{D} \mathbf{B}^{2} h A^{2} = \begin{bmatrix} 7.2 & 0 & 0 & -7.2 & -7.2 & 7.2 \\ 0 & 19.2 & -4.8 & 0 & 4.8 & -19.2 \\ 0 & -4.8 & 19.2 & 0 & -19.2 & 4.8 \\ -7.2 & 0 & 0 & 7.2 & 7.2 & -7.2 \\ -7.2 & 4.8 & -19.2 & 7.2 & 26.4 & -12 \\ 7.2 & -19.2 & 4.8 & -7.2 & -12 & 26.4 \end{bmatrix} \cdot 10^{5}$$

Statics of a panel

Wektor \mathbf{P}_{b} – Element 1

$$\mathbf{P}_{\mathbf{b}}^{1} = \int_{\Gamma_{ij}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$

Statics of a panel

Statics of a panel

Wektor \mathbf{P}_{b} – Element 1

$$\mathbf{P}_{\mathsf{b}}^{1} = \int_{\Gamma_{kl}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{li}^{1}} \mathbf{N}^{1^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$

Statics of a panel

Wektor
$$\mathbf{P}_{b}$$
 – Element 1

Statics of a panel

Wektor \mathbf{P}_{b} – Element 1

Statics of a panel

$$\mathbf{P}_{b}^{1} = \{0 \ 0 \ 0 \ 0 \ 0 \ -10 \ 0 \ -8\} + \{R_{1}^{1} \ R_{2}^{1} \ 0 \ 0 \ 0 \ 0 \ R_{7}^{1} \ R_{8}^{1}\}$$
$$\mathbf{P}_{b}^{1} = \begin{bmatrix} R_{1}^{1} \\ R_{2}^{1} \\ 0 \\ 0 \\ 0 \\ -10 \end{bmatrix}$$

 $0 \\ -10 \\ R_7^1$

Statics of a panel

Wektor \mathbf{P}_b – Element 2

$$\mathbf{P}_{\mathsf{b}}^{2} = \int_{\Gamma_{ij}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$

Statics of a panel

Wektor \mathbf{P}_{b} – Element 2

$$\mathbf{P}_{\mathbf{b}}^{2} = \int_{\Gamma_{ij}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \, \mathrm{d}\Gamma + \int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathrm{t} \mathrm{d}\Gamma + \int_{\Gamma_{ki}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathrm{t} \mathrm{d}\Gamma$$

interelem. edge
force balance
along line 2-5
$$\mathbf{t}_{jk}^{1} = -\mathbf{t}_{ki}^{2}$$

Computational Methods, 2020 © J.Pamin

 $d_3 d_3^2 = d_5$

Statics of a panel

Wektor \mathbf{P}_b – Element 2

$$\mathbf{P}_{\mathsf{b}}^{2} = -\int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$

Statics of a panel

Wektor \mathbf{P}_b – Element 2

$$\mathbf{P}_{b}^{2} = -\int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma$$
$$\int_{\Gamma_{jk}^{2}} \mathbf{N}^{2^{\mathrm{T}}} \mathbf{t} \mathrm{d}\Gamma = \int_{0}^{2} \left(\mathbf{N}^{1}(x^{(2)}, y^{(2)} = 2) \right)^{\mathrm{T}} \begin{bmatrix} 0 \\ -6\left(1 - \frac{x^{(2)}}{2}\right) - 7.5 \frac{x^{(2)}}{2} \end{bmatrix} \mathrm{d}x^{(2)}$$
$$= \{0 \ 0 \ 0 \ -7 \ 0 \ -6.5\}$$

Statics of a panel

Wektor \mathbf{P}_b – Element 2

$$\mathbf{P}_{\mathbf{b}}^{2} = \begin{bmatrix} 0\\ 0\\ 0\\ -7\\ 0\\ -6.5 \end{bmatrix}$$

Computational Methods, 2020 © J.Pamin

 $d_3 d_3^2 = d_5$

Statics of a panel

Statics of a panel

Statics of a panel

Statics of a panel

Statics of a panel

Assembly – Boole's matrix **B**

Computational Methods, 2020 © J.Pamin

loc. no.

Statics of a panel

Statics of a panel

Assembly – Boole's matrix ${f B}$

Statics of a panel

Assembly - stiffness matrix

$$\mathbf{K} = \mathbf{B}^{1^{\mathrm{T}}} \mathbf{K}^{1} \mathbf{B}^{1} + \mathbf{B}^{2^{\mathrm{T}}} \mathbf{K}^{2} \mathbf{B}^{2}$$

Statics of a panel

Assembly - stiffness matrix

Statics of a panel

Assembly - loading vector

$$\mathbf{P}_{\mathsf{b}} = \mathbf{B}^{1^{\mathrm{T}}} \mathbf{P}_{\mathsf{b}}^{1} + \mathbf{B}^{2^{\mathrm{T}}} \mathbf{P}_{\mathsf{b}}^{2}, \qquad \mathbf{P} = \mathbf{0}$$

Statics of a panel

 $\mathbf{I}_{d_{\mathcal{S}}}$

Computational Methods, 2020 © J.Pamin

 d_{10}

FEM set of equations: $\mathbf{Kd} = \mathbf{P} + \mathbf{P}_b$

16	-6	-1.6	1.2	0	0	-6.4	-1.2	-8	6		d_1		0		R_1	Í
-6	28	-1.2	10.4	0	0	1.2	-24.4	6	-14		d_2		-8		R_2	l
-1.6	-1.2	42.4	-6	-19.2	7.2	-8	-6	-13.6	6		d_3		0		0	l
1.2	10.4	-6	54.4	4.8	-7.2	-6	-14	6	-43.6		d_4		-16.5		0	l
0	0	-19.2	4.8	19.2	0	0	0	0	-4.8	105	d_5	_	0		0	l
0	0	7.2	-7.2	0	7.2	0	0	-7.2	0	. 10	d_{6}	=	-7	+	0	l
-6.4	1.2	-8	-6	0	0	16	6	-1.6	-1.2		d_7		0		R_7	l
-1.2	-24.4	-6	-14	0	0	6	28	1.2	10.4		d_8		0		R_8	l
-8	6	-13.6	6	0 -	-7.2	-1.6	1.2	23.2	-6	d_9		0		Õ	l	
6	-14	6	-43.6	-4.8	0	-1.2	10.4	-6	47.2		d_{10}		0		0	l

FEM set of equations: $\mathbf{Kd} = \mathbf{P} + \mathbf{P}_b$

1 6	-6	-1.6	1.2	0 0	-6.4	-1.2	-8	6	1	F 0 7		0		R_1
-6	28	-1.2	10.4	0 0	1.2	-24.4	6	-14		0		-8		R_2
-1.6	-1.2	42.4	-6	-19.2 7.2	-8	-6	-13.6	6		d_3		0		0
1.2	10.4	-6	54.4	4.8 - 7.2	-6	-14	6	-43.6		d_4		-16.5		0
0	0	-19.2	4.8	19.2 0	0	0	0	-4.8	105	d_5	_	0		0
0	0	7.2	-7.2	0 7.2	0	0	-7.2	0	1.10	d_6	-	-7	т	0
-6.4	1.2	-8	-6	0 0	16	6	-1.6	-1.2		0		0		R_7
-1.2	-24.4	-6	-14	0 0	6	28	1.2	10.4		0		0		R_8
-8	6	-13.6	6	0-7.2	-1.6	1.2	23.2	-6		d_9		0		0
L 6	-14	6	-43.6	-4.8 0	-1.2	10.4	-6	47.2		d_{10}		0		_ 0 _

FEM set of equations: $\mathbf{Kd} = \mathbf{P} + \mathbf{P}_b$

0 - 6.416 -6 -1.6 1.20 -1.2-8 6 0 -8 $R_1 \\ R_2$ -1.2 1.2 -6 2810.40 0 -24.46 -14 -1.6 -1.242.4-19.27.2-8 -6 -13.6 d_3 d_4 0 0 -6 6 1.2 10.4-6 54.44.8-7.2 -6 -14 6 -43.6 -16.5 0 0 0 0 -19.24.819.20 0 0 -4.8 10^{5} d_5 0 -7 0 0 0 = $\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$ 7.2 0 0 -7.2 0 0 0 7.2-7.20 0 0 d_{6} R_7 16 6 28 -1.6 -6.41.2-8 -6 -1.2 0 -1.2 -6 -14 6 1.2 -24.410.40 R_8 -8 -13.6 6 0-7.2 -1.6 1.2 23.2 -6 d_{9} 0 6 0 -4.8 0 -1.2 47.20 0 6 -14 6 -43.6 10.4-6 d_{10}

Solution:

 $\mathbf{d} = \{0 \; 0 \; 3.881 \; \text{-} 11.03 \; 3.949 \; \text{-} 19.62 \; 0 \; 0 \; \text{-} 3.744 \; \text{-} 10.75\} \cdot 10^{-5} \; \text{m}$

 $\mathbf{R} = \{-54\ 16.744\ 0\ 0\ 0\ 0\ 54\ 14.756\ 0\ 0\}\ kN$

3

 d_6

Example Statics of a panel

Return to element: Element 1

$$\mathbf{d}^{1} = \mathbf{B}^{1}\mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$

Statics of a panel

Return to element: Element 1

$$\mathbf{d}^{1} = \mathbf{B}^{1}\mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{1} = \mathbf{B}^{1}\mathbf{d}^{1}$$
$$\boldsymbol{\varepsilon}^{1} = \begin{bmatrix} 0.953y - 0.936 \\ -0.034x \\ 0.953x - 0.034y - 2.688 \end{bmatrix} \cdot 10^{-5}, \quad \boldsymbol{\varepsilon}^{1}(2, 1) = \begin{bmatrix} 1.708 \\ 6.831 \\ -81.600 \end{bmatrix} \cdot 10^{-7}$$

Statics of a panel

Return to element: Element 1

$$\mathbf{d}^{1} = \mathbf{B}^{1} \mathbf{d} = \{0 \ 0 \ -3.744 \ -10.75 \ 3.881 \ -11.03 \ 0 \ 0\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{1} = \mathbf{B}^{1} \mathbf{d}^{1}$$
$$\boldsymbol{\varepsilon}^{1} = \begin{bmatrix} 0.953y - 0.936 \\ -0.034x \\ 0.953x - 0.034y - 2.688 \end{bmatrix} \cdot 10^{-5}, \quad \boldsymbol{\varepsilon}^{1}(2, 1) = \begin{bmatrix} 1.708 \\ 6.831 \\ -81.600 \end{bmatrix} \cdot 10^{-7}$$
$$\boldsymbol{\sigma}^{1} = \mathbf{D}\boldsymbol{\varepsilon}^{1}$$
$$\boldsymbol{\sigma}^{1} = \begin{bmatrix} 182.976y - 179.712 - 1.632x \\ 45.744y - 44.928 - 6.528x \\ 68.616x - 2.448y - 193.536 \end{bmatrix}, \quad \boldsymbol{\sigma}^{1}(2, 1) = \begin{bmatrix} 0 \\ -12.297 \\ -58.750 \end{bmatrix} \text{ kPa}$$

Statics of a panel

(

Return to element: Element 2

$$\mathbf{d}^2 = \mathbf{B}^2 \mathbf{d} = \{-3.744 - 10.75 \ 3.949 - 19.62 \ 3.881 - 11.03\} \cdot 10^{-5}$$

Statics of a panel

Return to element: Element 2

$$\mathbf{d}^{2} = \mathbf{B}^{2} \mathbf{d} = \{-3.744 - 10.75 \ 3.949 - 19.62 \ 3.881 - 11.03\} \cdot 10^{-5}$$
$$\boldsymbol{\varepsilon}^{2} = \mathbf{B}^{2} \mathbf{d}^{2}$$
$$\boldsymbol{\varepsilon}^{2} = \begin{bmatrix} 3.416\\ 13.660\\ -48.610 \end{bmatrix} \cdot 10^{-7}$$

Statics of a panel

Return to element: Element 2

