Frame statics solved using CALFEM toolbox for MATLAB

Piotr Pluciński

Institute for Computational Civil Engineering
Cracow University of Technology

March 2012

Frame element description

Approximation

$$
\begin{gathered}
\mathbf{u}^{e}(x)=\mathbf{N}^{e}(x) \mathbf{q}^{e} \\
\mathbf{N}^{e}=\left[\begin{array}{cccccc}
L_{i}^{e} & 0 & 0 & L_{j}^{e} & 0 & 0 \\
0 & H_{i}^{e} & \widehat{H}_{i}^{e} & 0 & H_{j}^{e} & \widehat{H}_{j}^{e}
\end{array}\right], \mathbf{q}^{e}=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
q_{6}
\end{array}\right]
\end{gathered}
$$

Frame element description

Approximation

$$
\mathbf{u}^{e}(x)=\mathbf{N}^{e}(x) \mathbf{q}^{e}
$$

$$
\mathbf{N}^{e}=\left[\begin{array}{cccccc}
L_{i}^{e} & 0 & 0 & L_{j}^{e} & 0 & 0 \\
0 & H_{i}^{e} & \widehat{H}_{i}^{e} & 0 & H_{j}^{e} & \widehat{H}_{j}^{e}
\end{array}\right], \mathbf{q}^{e}=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
q_{6}
\end{array}\right]
$$

Project "The development of the didactic potential of Cracow University of Technology in the range of modern construction" is co-financed by the European Union
within the confines of the European Social Fund and realized under surveilance of Ministry of Science and Higher Education

Frame element description

Displacements vector

$$
\mathbf{u}=\{u(x), v(x)\}
$$

Strain vector

$$
\mathbf{e}=\left\{\varepsilon_{x}, \kappa\right\}
$$

Stress vector

$$
\mathbf{s}=\{N(x), M(x)\}
$$

Distributed loading

$$
\mathbf{p}=\left\{p_{x}, p_{y}\right\}
$$

Matrix of constitutive relationships

$$
\mathbf{D}=\left[\begin{array}{cc}
E A & 0 \\
0 & E I
\end{array}\right]
$$

Differential operator matrix

$$
\mathbf{L}=\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x} & 0 \\
0 & -\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right]
$$

Kinematic and constitutive relations

$$
\mathbf{e}=\mathbf{L} \mathbf{u}=\mathbf{L N q}=\mathbf{B q}, \quad \mathbf{s}=\mathbf{D e}=\mathbf{D B q}
$$

Frame element description

Element stiffness matrix

$$
\mathbf{k}^{e}=\int_{0}^{l^{e}} \mathbf{B}^{e \mathrm{~T}} \mathbf{D}^{e} \mathbf{B}^{e} \mathrm{~d} x^{e}
$$

$$
\mathbf{k}^{e}=\frac{E I}{l^{3}}\left[\begin{array}{cccccc}
\frac{A l^{2}}{I} & 0 & 0 & -\frac{A l^{2}}{I} & 0 & 0 \\
0 & 12 & 6 l & 0 & -12 & 6 l \\
0 & 6 l & 4 l^{2} & 0 & -6 l & 2 l^{2} \\
-\frac{A l^{2}}{I} & 0 & 0 & \frac{A l^{2}}{I} & 0 & 0 \\
0 & -12 & -6 l & 0 & 12 & -6 l \\
0 & 6 l & 2 l^{2} & 0 & -6 l & 4 l^{2}
\end{array}\right]^{e}
$$

Transformation matrix
 $$
c=\cos \left(\alpha^{e}\right) \text { i } s=\sin \left(\alpha^{e}\right)
$$

$$
\mathbf{T}^{e}=\left[\begin{array}{rrrrrr}
c & s & 0 & 0 & 0 & 0 \\
-s & c & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & c & s & 0 \\
0 & 0 & 0 & -s & c & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Frame element description

Substitute nodal forces

$$
\mathbf{z}^{e}=\int_{0}^{l^{e}} \mathbf{N}^{e \mathrm{~T}} \mathbf{p}^{e} \mathrm{~d} x^{e}
$$

for $p_{x}=\mathrm{const}=\widehat{p}_{x}$ i $p_{y}=\mathrm{const}=\widehat{p}_{y}$
$\mathbf{z}^{e}=\left\{\frac{\widehat{p}_{x} l}{2}, \frac{\widehat{p}_{y} l}{2}, \frac{\widehat{p}_{y} l^{2}}{12}, \frac{\widehat{p}_{x} l}{2}, \frac{\widehat{p}_{y} l}{2},-\frac{\widehat{p}_{y} l^{2}}{12}\right\}^{e}$

Assignment

Discretization

Script - frame.m

function frame()

Script - frame.m

function frame()
\% definition of dof matrix
\% for elements
Edof=[1123456; 2456789 ; 37891011 12];

Script - frame.m

function frame()
\% definition of dof matrix
\% for elements
Edof=[1123456; 2456789 ; 37891011 12];
\% matrix of node coordinates
Coord=[0 0; 1.5 2; $34 ; 60]$;

Script - frame.m

function frame()
\% definition of dof matrix
\% for elements
Edof=[1123456; 2456789 ; 37891011 12];
\% matrix of node coordinates
Coord=[0 0; 1.5 2; $34 ; 60]$;
\% matrix of dofs
Dof=[1 2 3; 45 6; 78 9; 1011 12];

Script - frame.m

function frame()
\% definition of dof matrix
\% for elements
Edof=[1123456; 2456789 ; 37891011 12];
\% matrix of node coordinates
Coord=[0 0; 1.5 2; 3 4; 60];
\% matrix of dofs
Dof $=\left[\begin{array}{lllll}1 & 2 & 3 ; & 4 & 5 \\ 7 & 6 & 9 ; & 10 & 11\end{array}\right.$ 12];
\% compute coordinate vectors

\% for elements
[Ex,Ey]=coordxtr(Edof,Coord,Dof,2);

Script - frame.m

\% material/section properties
$\mathrm{E}=2 \mathrm{e} 7$;
$\mathrm{I}=1 \mathrm{e}-4$;
$\mathrm{A}=0.03$;
ep $=[E, A, I]$;

Script - frame.m

\% material/section properties
$\mathrm{E}=2 \mathrm{e} 7$;
$\mathrm{I}=1 \mathrm{e}-4$;
$\mathrm{A}=0.03$;
ep $=[E, A, I]$;
\% zero global matrices
$\mathrm{K}=$ zeros(12);
$\mathrm{F}=$ zeros(12,1);

Script - frame.m

\% material/section properties
$\mathrm{E}=2 \mathrm{e} 7$;
$\mathrm{I}=1 \mathrm{e}-4$;
$\mathrm{A}=0.03$;
ep $=[E, A, I]$;
\% zero global matrices
$\mathrm{K}=$ zeros(12);
$\mathrm{F}=$ zeros(12,1);
\% account for
\% concentrated loads
$F(4)=100$;
$F(9)=50$;

Equivalent nodal forces

Script - frame.m

\% plot the frame eldraw2(Ex,Ey, [1,2,2]);

Script - frame.m

\% plot the frame eldraw2(Ex,Ey, [1,2,2]);
\% compute stiffness matrices for elements
Ke1=beam2e(Ex(1,:),Ey(1,:),ep);
Ke2=beam2e(Ex(2,:),Ey(2,:),ep);
[Ke3,Ze3]=beam2e(Ex(3,:),Ey(3,:),ep,eq);

Script - frame.m

\% plot the frame eldraw2(Ex,Ey, [1,2,2]);
\% compute stiffness matrices for elements
Ke1=beam2e(Ex(1,:),Ey(1,:),ep);
Ke2=beam2e(Ex(2,:),Ey(2,:),ep);
[Ke3,Ze3]=beam2e(Ex(3,:),Ey(3,:),ep,eq);
\% assemble global stiffness matrix and load vector
$\mathrm{K}=\operatorname{assem}(\operatorname{Edof}(1,:), \mathrm{K}, \mathrm{Ke} 1)$;
K=assem(Edof(2,:),K,Ke2);
$[K, F]=\operatorname{assem}(E d o f(3,:), K, K e 3, F, Z e 3) ;$

Script - frame.m

\% plot the frame eldraw2(Ex,Ey, [1,2,2]);
\% compute stiffness matrices for elements
Ke1=beam2e(Ex(1,:),Ey(1,:),ep);
Ke2=beam2e(Ex(2,:),Ey(2,:),ep);
[Ke3,Ze3]=beam2e(Ex(3,:),Ey(3,:),ep,eq);
\% assemble global stiffness matrix and load vector $\mathrm{K}=\operatorname{assem}(\operatorname{Edof}(1,:), \mathrm{K}, \mathrm{Ke} 1)$;
K=assem(Edof(2,:),K,Ke2); $[K, F]=\operatorname{assem}(E d o f(3,:), K, K e 3, F, Z e 3) ;$
\% account for boundary conditions $\mathrm{bc}=[10 ; 20 ; 30 ; 100 ; 110 ; 120]$;

Script - frame.m

\% compute displacement and reaction force vector $[Q, R]=$ solveq (K,F,bc)

Script - frame.m

\% compute displacement and reaction force vector
$[Q, R]=$ solveq (K,F,bc)
\% extract nodal displacements for all elements
Qe=extract(Edof,Q);

Script - frame.m

\% compute displacement and reaction force vector $[Q, R]=$ solveq (K,F,bc)
\% extract nodal displacements for all elements Qe=extract(Edof,Q);
\% return to elements to compute nodal forces
f1=beam2s(Ex(1,:), Ey(1,:),ep,Qe(1,:))
f2=beam2s(Ex(2,:),Ey(2,:),ep,Qe(2,:))
f3=beam2s(Ex(3,:),Ey(3,:),ep,Qe(3,:),eq)

Script - frame.m

\% compute displacement and reaction force vector $[Q, R]=$ solveq (K,F,bc)
\% extract nodal displacements for all elements Qe=extract(Edof,Q);
\% return to elements to compute nodal forces
f1=beam2s(Ex(1,:), Ey(1,:),ep,Qe(1,:))
f2 $2=$ beam $2 \mathrm{~s}(\operatorname{Ex}(2,:), \operatorname{Ey}(2,:), \mathrm{ep}, \mathrm{Qe}(2,:))$
f3=beam2s(Ex(3,:),Ey(3,:),ep,Qe(3,:),eq)
\% draw deformed frame
eldisp2(Ex,Ey,Qe,[1,4,1]);

Results

$$
Q=
$$

$$
\mathrm{R}=
$$

-69.3890
-2.6878
73.2148
0.0355
-0.0264
-0.0073
0.0003
-0.0001
0.0288

0
0
0.0000
-0.0000
-0.0000
0.0000
0.0000
0.0000
-30.6110
32.6878
15.6586
f1 $=$

43.7836	-53.8986	-73.2148
43.7836	-53.8986	61.5316

f2=
-16.2164
26.1014
61.5316
$-16.2164 \quad 26.1014 \quad-3.7219$
f3=
-20.5168 $\begin{array}{lll}-22.8761 & -53.7219\end{array}$
$-44.5168 \quad-4.8761 \quad 15.6586$

Force sign convention in FE

Classical FEM

CALFEM

Script - frame.m - diagrams

\% return to elements to compute nodal forces
f1=beam2s(Ex(1,:),Ey(1,:),ep,Qe(1,:),[0,0],7)
f2=beam2s(Ex(2,:),Ey(2,:),ep,Qe(2,:),[0,0],7)
f3=beam2s(Ex(3,:),Ey(3,:),ep,Qe(3,:),eq,21)

Script - frame.m - diagrams

\% return to elements to compute nodal forces
f1=beam2s(Ex(1,:),Ey(1,:),ep, Qe(1,:),[0,0],7)
f2=beam2s(Ex(2,:),Ey(2,:),ep,Qe(2,:),[0,0],7)
f3=beam2s(Ex(3,:),Ey(3,:),ep,Qe(3,:),eq,21)
\% Deformed frame
figure(1)
eldraw2(Ex,Ey, [1,2,2]);
eldisp2(Ex,Ey, Qe,[1,4,1]);
axis([-1 7-1 5]);
title('Displacements')
plotpar=[21];

Script - frame.m - diagrams

\% Normal forces
figure(2)
scal $=$ scalfact2(Ex(3,:), Ey(3,:),f3(:,1),0.35); eldia2(Ex(1,:),Ey(1,:),f1(:,1),plotpar,scal); eldia2(Ex(2,:),Ey(2,:),f2(:,1),plotpar,scal); eldia2(Ex(3,:),Ey(3,:),f3(:,1),plotpar,scal);
axis([-1 7 -1 5]) title('Normal forces')

Script - frame.m - diagrams

\% Normal forces
figure(2)
scal=scalfact2(Ex(3,:),Ey(3,:),f3(:,1),0.35); eldia2(Ex(1,:),Ey(1,:),f1(:,1),plotpar,scal); eldia2(Ex(2,:),Ey(2,:),f2(:,1), plotpar,scal); eldia2(Ex(3,:),Ey(3,:),f3(:,1),plotpar,scal); axis([-1 7 -1 5]) title('Normal forces')
\% Shear forces
figure(3)
scal $=$ scalfact2(Ex(1,:),Ey(1,:),f1(:,2),0.35); eldia2(Ex(1,:),Ey(1,:),f1(:,2),plotpar,scal); eldia2(Ex(2,:),Ey(2,:),f2(:,2), plotpar,scal); eldia2(Ex(3,:),Ey(3,:),f3(:,2), plotpar,scal); axis([-1 7 -1 5]); title('Shear forces')

Script - frame.m - diagrams

\% Moments
figure(4)
scal=scalfact2(Ex(1,:),Ey(1,:),f1(:,3),0.35);
eldia2(Ex(1,:),Ey(1,:),f1(:,3),plotpar,scal);
eldia2(Ex(2,:),Ey(2,:),f2(:,3),plotpar,scal);
eldia2(Ex(3,:),Ey(3,:),f3(:,3),plotpar,scal);
axis([-1 7 -1 5]);
title('Bending moments');

Diagrams

