LABORATORY ASSIGNMENT

After reviewing Chapter of the lecture notes write a MATLAB program that calculates axial displacements and forces in a bar.

The bar is fixed on the left side, subjected to a continuous load q and a concentrated force P at the right end. Use linear shape functions and the CALFEM instructions *assem* and *solveq*.

Determine the elements of the stiffness matrix and load vector using symbolic operations with *diff* and *int*.

Calculate natural frequencies and mode shapes using the *eigen* procedure.

In the report, submit to the instructor:

- the program code, and
- a brief report containing:
 - o plots of displacements, axial force,
 - o the first four mode shapes and corresponding frequencies,
 - and a convergence plot of the displacement at the end of the bar as a function of the number of degrees of freedom.

For a selected finite element, use the solution vector from the program to extract the corresponding degrees of freedom and write down the formula for the approximate solution in that element **by hand**.

Make sure the input data and results are realistic.

Algorithm:

- 1. After declaring *syms x*, define the input data: *q* (as a function of x), *E*, *A*, *L*, *P*.
- 2. Define the number of elements *Nel* and compute:
 - o the number of degrees of freedom *Ndof*, and
 - the vector of node coordinates *coord*.

- 3. Initialize the global stiffness matrix *KG*, mass matrix *MG*, and the global load vector *fG* as zero.
- 4. Insert the value of the concentrated force **P** into the appropriate entry of the vector **fG**.
- 5. Loop over elements (*iel = 1:Nel*)

a. Select node coordinates **x1** and **x2**

b. Define linear shape functions **f1** and **f2**, and compute their derivatives (symbolically)

c. Form matrices **B** and **N**

d. Compute the element stiffness matrix *Kel* and load vector *Pel* (using symbolic integration)

e. Use the *assem* function to assemble:

[KG, fG] = assem([iel, iel, iel+1], KG, Kel, fG, Pel);

- f. Compute the element mass matrix *Mel* (symbolically)
- g. Use assem again to update the mass matrix:

MG = assem([iel, iel, iel+1], MG, Mel);

- 6. Create a boundary condition vector **bc** of size 1×2: the number of the known DOF (displacement) and its value.
- 7. Solve the system of equations with the kinematic conditions using *solveq*:

u = solveq(KG, fG, bc);

- 8. Use the *plot* command to visualize the displacement approximation.
- 9. Loop over elements (*i* = 1:Nel):
 - a. Select node coordinates **x1** and **x2**
 - b. *Extract* DOF values from vector u
 - c. Compute derivatives of the shape functions
 - d. Write the formula for axial force \boldsymbol{S} in the element
 - e. Use *fplot* to visualize the force approximation:

fplot(S, [x1, x2]), hold on

10. Use the *eigen* procedure to compute frequencies and mode shapes:

[La, Egv] = eigen(KG, MG, bc(:,1));

11. Plot the first four mode shapes. Example for the first one:

Freq = sqrt(La)/(2*pi);

figure(3)

plot(coord, Egv(:,1)), grid on

MATLAB Code Skeleton (to copy and complete):

% AXIAL LOADING OF A BAR

clear;

syms x

%% INPUT DATA

E =

A =

rho =

L =

q =

-1

P =

%% **DISCRETIZATION**

Nel =

Ndof = Nel + 1;

coord = linspace(0, L, Ndof);

```
%% INITIALIZATION
```

```
KG = zeros(Ndof, Ndof);
```

```
MG =
```

fG =

fG(end) = % Apply concentrated force

```
%% ELEMENT LOOP
for iel = 1:Nel
 x1 = coord(iel);
 x2 =
 phi1 = (x - x2) / (x1 - x2);
 phi2 =
 N = [phi1, phi2];
 B =
 Kel =
 Pel =
 [KG, fG] = assem([iel, iel, iel+1], KG, Kel, fG, Pel);
 Mel =
 MG =
end
%% SOLVE SYSTEM
bc =
```

u = solveq(KG, fG, bc);

```
figure(1)
```

plot

```
xlabel('x'); ylabel('Displacement'); grid on
```

```
%% AXIAL FORCE
figure(2), hold on
for iel = 1:Nel
    x1 = coord(iel);
    x2 =
    u1 = u(iel);
    u2 =
    dphi1 = 1 / (x1 - x2);
    dphi2 =
    S =
    fplot(S, [x1, x2]), hold on
end
xlabel('x'); ylabel('Axial Force'); grid on
```

%% NATURAL FREQUENCIES & MODES [La, Egv] = eigen(KG, MG, bc(:,1)); Freq = sqrt(La) / (2 * pi);

figure(3) plot(coord, Egv(:,1)), grid on xlabel('x'); ylabel('1st Mode Shape')