

ZASTOSOWANIE ŚRODOWISKA MATLAB DO ZAGADNIEŃ BRZEGOWYCH Partial Differential Equation Toolbox (PDETOOL)

1. PDETOOL

Narzędzie pozwala na przybliżone rozwiązywanie zagadnień początkowo-brzegowych, brzegowych i własnych dla problemów dwuwymiarowych metodą elementów skończonych.

PRZYKŁADOWE ZADANIA:

- I. STATYKA DLA PŁASKIEGO STANU ODKSZTAŁCENIA
- II. ANALIZA MODALNA (DRGANIA WŁASNE)

Etapy modelowania:

1. Po uruchomieniu Matlaba w oknie komend (COMMAND WINDOW) wpisujemy polecenie *pdetool* (otworzy się GUI).

2. Na początku wybieramy rodzaj zadania (płaski stan odkształcenia) *Structural Mechanics, Plane Strain* albo z rozwinięcia paska, w którym w momencie uruchomienia wyświetlone jest *Generic Scalar* albo z menu głównego: *Options* \rightarrow *Application* \rightarrow *Structural Mechanics, Plane Strain*.

PDE Modeler - [Untitled]		- ×
File Edit Options Draw Boundary PDE Mesh Solve Plot		
$\Box \pm \bigcirc \oplus \gg \partial \Omega \text{ pde } \bigtriangleup = 4 \mathbb{Q}$	Generic Scalar	X: 0.4229 Y: -0.6759
Set formula:	Generic Scalar	
	Generic System	
L	Structural Mech., Plane Stress	
	Structural Mech., Plane Strain	
	Electrostatics	
	Magnetostatics	
	AC Power Electromagnetics	
1 1	Conductive Media DC	
	Heat Transfer	
0.8 -	Diffusion	-
ne -		

- 3. Przyjmujemy parametry zadania (w pasku narzędzi ikona PDE lub z menu *PDE* → *PDE Specification*)
 - I. problem eliptyczny (*Elliptic*)
 - II. analiza modalna (*Eigenmodes*)

gdzie: E – moduł Younga, nu – współczynnik Poissona, Kx, Ky – składowe sił objętościowych, rho – gęstość materiału.

PDE Modeler - [Untitled] - x					
File Edit Options Draw Boundary PDE Mesh Solve Plot					
	\oplus \supset $\partial\Omega$ pde \triangle		Structural Mech.,	Plane Strain X: 1 Y: 0.01581	
Set formula:					
PDE Specification - ×					
Equation: Structural mechanics, plane strain					
	Turne of PDE:	Coofficient	Value	Description	
	Type of FDE.	Coefficient	value	Description	
	Elliptic	E	200e9	Young's modulus	
	OParabolic	nu	0.3	Poisson ratio	
0.	OHyperbolic	Kx	0.0	Volume force, x-direction	
	OEigenmodes	Ку	0.0	Volume force, y-direction	
0.		rho	7860	Density -	
0.	ſ	ОК		Cancel	
	L				
0:	2 -			4	

4. Generowanie obszaru

Na początek można ustawić zakres wyświetlanego układu współrzędnych *Options* \rightarrow *Axes Limits* oraz włączyć pomocniczą siatkę *Options* \rightarrow *Grid*. Aby wygenerować model można wykorzystać z paska narzędzi gotowe ikony do zdefiniowania obszaru albo z menu głównego wybrać *Draw* i odpowiednie polecenie. Stworzone obszary automatycznie zostają nazwane.

Po narysowaniu można skorygować obszar i nazwę poprzez dwukrotne kliknięcie we wnętrze obiektu. Jeżeli narysujemy kilka obszarów to możemy dokonywać na nich różnych operacji w linii *Set formula* (domyślnie dwa narysowane obszary są sumowane np. R1+P1, ale można je również odjąć R1-P1 (przy większej liczbie obszarów obszar P1 musi znajdować się *wewnątrz* obszaru, a którego jest odejmowany) albo znaleźć część wspólną R1*P1). Zmiany są widoczne dopiero w dalszym etapie modelowania. Aby usunąć obszar klikamy na niego raz (podświetli się brzeg na kolor czarny) i na klawiaturze wybieramy Delete.

Po narysowaniu obszaru można wykorzystać *Options* \rightarrow *Axes equal* aby skala na osiach była taka sama.

Przykładowo: modyfikacja na prostokącie R1 przez podwójne kliknięcie obszaru E1 w celu narysowaniu koła o środku w p.(2,1.5) i promieniu 0.7.

Chcemy mieć otwór, dlatego koło zostanie odjęte od prostokąta (R1-E1).

5. Warunki brzegowe – Boundary \rightarrow Boundary Mode lub ikona $\partial \Omega$

Warunki Dirichleta (brzeg modelu oznaczony kolorem czerwonym), Neumanna (kolor niebieski) lub mieszane (kolor czarny). Domyślnie przyjęte są na każdym brzegu zerowe warunki Dirichleta. Aby je zmienić możemy skorzystać z odpowiedniej ikonki w pasku narzędzi albo wybrać w menu głównym Boundary → Specify Boundary Conditions. Na początku należy zaznaczyć część brzegu, dla którego chcemy dokonać zmian, a następnie albo kliknąć w niego dwukrotnie, albo wybrać w menu głównym Boundary i odpowiednią opcję. Można dokonać selekcji kilku części brzegu równocześnie poprzez wciśnięcie przy wyborach klawisza SHIFT. Przy zadawaniu warunków brzegowych należy zwrócić uwagę na równanie, które chcemy spełnić.

Przykład: załóżmy, że na lewej krawędzi jest zerowy warunek Dirichleta, na górnej krawędzi obciążenie skierowane pionowo dół o wartości 1000kN/m (brzeg z warunkiem Neumanna), na pozostałej części zerowy warunek Neumanna (czyli brzeg swobodny, nieobciążony i niepodparty).

6. Siatka ES

Możemy skorzystać z dwóch ikonek w pasku narzędzi równomiernie zagęszczona albo w menu głównym wybrać $Mesh \rightarrow Initialize Mesh$ (*Refine Mesh*).

7. Rozwiązanie zadania

Wybieramy odpowiednią ikonkę w pasku narzędzi lub w menu *Solve* \rightarrow *Solve PDE*. Na ekranie wyświetlą się rezultaty w postaci map warstwicowych

II. dla zadania poszukiwania postaci drgań własnych pamiętamy o przełączeniu się na problem Eigenmodes (punkt 3 instrukcji); wówczas można zmienić zakres poszukiwań wartości własnych w menu głównym Solve → Parameters.

8. Postprocessing

Wybieramy odpowiednią ikonkę w pasku narzędzi lub w menu głównym *Plot* \rightarrow *Parameters* w celu wyboru wyświetlenia odpowiednich map rozwiązania, konturu, postaci deformacji, siatki MES. Warto w Colormap zmienić kolory wyświetlania na jet, gdyż są bardziej czytelne

II. dla analizy modalnej pojawia się dodatkowa opcja wyświetlania postaci drgań własnych dla wybranego wcześniej zakresu wartości własnych poprzez wybór Eigenvalues.

UWAGA: dla naszego przykładu należy zwiększyć zakres poszukiwanych wartości własnych np. na [0, 1e7] (Solve \rightarrow Parameters).

Każde wprowadzane dane i wyniki poszczególnych etapów modelowania można eksportować do przestrzeni roboczej Matlaba w postaci macierzy. W szczególności opcja $Mesh \rightarrow Export$ pozwala zapisać informacje o dyskretyzacji (p – współrzędne węzłów, e – krawędzie, t – elementy trójkątne), $PDE \rightarrow Export$ zapisuje parametry rozwiązywanego równania, $Solve \rightarrow Export$ zapisuje wyniki obliczeń

I. po wyeksportowaniu odpowiednich danych (dyskretyzacja + parametry zadania) i wyników (przemieszczenia) możliwe jest obliczenie składowych tensora naprężenia, odkształcenia, naprężenia zastępczego Misesa poprzez użycie procedury *pdesmech* przykłady: mises=pdesmech(p,t,c,u,'tensor','von Mises','application','pn','nu',0.3) sx=pdesmech(p,t,c,u,'tensor','sxx')

Mając wyeksportowany wektor rozwiązań *u* można rozdzielić współrzędne do wektorów związanych z danym kierunkiem:

m=length(u) ux=u(1:m/2) uy=u(m/2+1:m)

Plik analizy zapisywany jest w postaci M-file. Można na początku analizy zapisać taki plik i w edytorze Matlaba śledzić jakie zmiany są wprowadzane do pliku z każdego etapu modelowania. Po wczytaniu pliku (można go edytować) otwierane jest automatycznie GUI pdetool i pokazany jest zapisany etap modelowania.

2. Zastosowanie procedur CALFEM

Należy dokonać edycji załączonego pliku *zad2.m.* Poszczególne etapy:

- 1. Przyjęcie stałych materiałowych (o tych samych wartościach jak założone wcześniej w p. 3)
- 2. Po uruchomieniu pliku zad2.m otrzymujemy rysunki z zaznaczonymi numerami elementów i węzłów:

Numeracja węzłów:

3. Na podstawie odczytanych numerów węzłów modyfikujemy plik *zad2.m* definiując warunki brzegowe statyczne i kinematyczne. Jeśli np. w rozważanym przykładzie utwierdzony jest lewy brzeg, a obciążona siła równomiernie rozłożona skierowana w dół jest górna krawędź, to należy zdefiniować:

kinematyczne warunki brzegowe, podając w pierwszej kolumnie numery stopni swobody, które są zablokowane (np. węzeł nr 40 ma numery stopni swobody 79 w poziomie i 80 w pionie, węzeł 39 ma stopnie swobody 77 i 78 itd.):

oraz wartość siły na pionowych kierunkach w węzłach wewnętrznych krawędzi, związane z parzystymi stopniami swobody 50 - 56,

f([50:2:56], 1) = - wartość obciążania stałego * długość obciążonej krawędzi elementu a w węzłach skrajnych

f([8, 6], 1) = - wartość obciążenia stałego * długość obciążonej krawędzi elementu * 0.5 Długość elementu można policzyć na podstawie długości krawędzi i liczby elementów (gdy równy podział na brzegu) lub precyzyjnej korzystając z wyeksportowanej z PDETOOL tablicy *p*.

- 4. Naprężenia zredukowane σ_{red} , czyli Misesa, obliczamy ze wzoru podanego wcześniej w instrukcji (mises=pdesmech...)
- 5. ||u||∞ obliczamy wg podanego w temacie zadania wzoru na podstawie wyeksportowanego rozwiązania z menu solve (PDETOOL eksportuje jedynie przemieszczenia u). Pamiętajmy, że wyeksportowany z PDETOOL wektor u zawiera najpierw kolejno wszystkie składowe x-owe, a potem składowe y-owe, natomiast przygotowany program z wykorzystaniem CALFEM wylicza przemieszczenia w układzie przemiennym [u_{x1}, u_{y1}, u_{x2}, u_{y2}, ...]. Aby obliczyć wyrażenie pod pierwiastkiem we wzorze na ||u||∞, należy odpowiednio przygotować dane. Warto pamiętać o funkcji Matlaba *max* i *min*.
- 6. W celu obliczenia naprężeń Misesa Smises w CALFEM należy wykonać pętle po elementach, w której funkcją plants obliczymy naprężenia

Sig=plants(Ex(iel,:),Ey(iel,:),[2 1],D,Ed(iel,:))

co pozwoli na wyznaczenie

Smises(iel) = $(sqrt(1/2*((Sig(1)-Sig(3))^2 +...)))$

z których należy wybrać wartość maksymalną.

 Podanie częstości drgań własnych nie powinno sprawiać problemu, odczytuje się je bezpośrednio w programie. Proszę przypomnieć sobie definicję częstości kołowej ω [rad/s], jej związek z wartością własną La podawaną przez funkcję Eigen,

$$\omega = \sqrt{La}$$

oraz definicję częstotliwości f [Hz], i związek częstotliwości f z częstością ω:

 $f = \frac{\omega}{2*\pi}$