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Abstract. In this paper we consider the problem of identification of elastic parameters of ho-
mogeneous, elastic and hexagonally orthotropic plates. The proposed solution of the identifica-
tion problem is based on dispersion curves for Lamb waves propagating in free waveguides and
Bayesian inference for sequential estimation of elastic parameters with uncertainty quantifica-
tion. In particular we solve the problem by treating the unknown elastic parameters as state
variables of a stationary dynamic system and formulating the sequential identification problem
as a Bayesian state estimation problem. We solve the problem by using sequential Monte Carlo
filter (a.k.a. particle filter). Finally, we present two case studies which correspond either to
pseudo-experimental computer simulations or laboratory tests in which the elastic parameters
of an aluminum thin plate are estimated. The results confirm that the proposed approach allows
to find the unknown elastic parameters and that this approach is also useful for quantification
of uncertainty with respect to the elastic parameters.
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1 INTRODUCTION

Currently guided Lamb waves are often used for non-destructive identification of elastic
constants of materials. In general, the identification procedure is based on minimization of the
discrepancy between experimental and numerical or analytical dispersion curves. Rogers in
his highly cited paper presents results of identification of elastic properties of several materials
(aluminum, steel, glass) using nonlinear least squares method [5].

Recently, Pabisek et al. in [4] proposed reconstruction of elastic moduli of plates based on
fundamental symmetric and antisymmetric dispersion curves obtained through a semi-analytical
formulation and corresponding experimental curves. The hybrid method coupled with the neu-
ral network based inverse procedure was tested by identification of the elastic properties of a
thin aluminum plate.

Most of the guided Lamb wave based identification procedures are deterministic in nature
and provide only numerical values of the elastic properties. Thus, they are unable to charac-
terize reconstruction uncertainty in a systematic manner. In this context Bayesian methods can
be useful by offering systematic approach to uncertainty quantification. Gogu et al. applied
Bayesian methods for identification of elastic constants of an orthotropic plate and they found
that Bayesian approach offers more accurate representation of the experimental uncertainty [3].

Bayesian methods are also sequential by solving identification problems recursively. Re-
cently, Słoński in his paper applied particle filter in the problem of identification of elastic
parameters of aluminum this plates [7].

In this paper an application of particle filter for sequential stochastic identification of elastic
parameters of thin plates using Lamb waves monitoring is proposed. The procedure is based on
the comparison of numerical and experimental dispersion curves. The identification results are
then presented in the form of a posterior probability density distribution over elastic parameters
and the posterior describes the uncertainty. The proposed procedure is verified on an example
of pseudo-experimental dispersion curves computed for a thin orthotropic plate.

The paper is organized as follows. Section 2 presents the identification algorithm based on
Bayesian state estimation and particle filter for sequential stochastic identification of elastic pa-
rameters. Section 3 describes numerical experiments for verification of the proposed procedure
together with the results and Section 4 presents the final remarks.

2 IDENTIFICATION ALGORITHM

2.1 Bayesian state estimation problem

We formulate the sequential identification problem as a Bayesian state estimation prob-
lem. The elastic parameters are assumed to not change in time, so they are treated as time-
independent state variables, see [7] for details. Then the transition equation has the following
form:

xk+1 = xk. (1)

The equation (1) is further modified as

xk+1 = xk + wk+1, (2)

where wk is a noise random variables added for numerical efficiency of particle filter-based
identification. In this work, w is assumed to be a set of independent and identically distributed
(iid) Gaussian random variables

p(w) = N(w|0, σ2
w), (3)
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where σ2
w is a covariance matrix.

The states are recursively estimated using measurements yk+1 that here are defined as the pa-
rameters of fundamental antisymmetric dispersion curvesA0. They are related to state variables
xk+1 by the nonlinear observation model h(xk+1, vk+1) as

yk+1 = h(xk+1) + vk+1, (4)

where vk+1 is a noise random variables introduced to account for modeling and measurement
uncertainties. Here it is also assumed to be a set of independent and identically distributed (iid)
Gaussian random variables

p(v) ∝ N(v|0, σ2
v), (5)

where σ2
v is a covariance function.

The main goal of Bayesian state estimation is sequential inference of the posterior distribu-
tion p(xk+1|Y1:k+1) starting from a prior distribution p(xk|Y1:k). The inference is performed
recursively in two steps: prediction step and update (correction) step. In the first step the predic-
tion of state variables distribution p(xk+1|yk) before applying new measurements is done. This
distribution is computed using the sum rule of probability and integrating out the state variables
as

p(xk+1|Y1:k) =
�

p(xk+1|xk)p(xk|Y1:k)dxk. (6)

Then the new measurements yk+1 are used to update the prior to obtain the posterior distri-
bution p(xk+1|Y1:k+1) applying the Bayes’ rule

p(xk+1|Y1:k+1) =
p(yk+1|xk+1)p(xk+1|Y1:k)

p(yk+1|Y1:k)
, (7)

where the denominator in (7) is computed from

p(yk+1|Y1:k) =
�

p(yk+1|xk+1)p(xk+1|Y1:k)dxk+1. (8)

The update step in Eq. (7) can be also written in the recursive form that is more useful for
obtaining particle filter algorithm. Using Bayes’ rule we can rewrite Eq. (7) as

p(xk+1|Y1:k+1) = p(xk|Y1:k)
p(yk+1|xk+1)p(xk+1|xk)

p(yk+1|Y1:k)
. (9)

2.2 Particle filter

The Bayesian state estimation described above gives the posterior distribution over the states.
It does not give however, the way to find the solution efficiently using both equations (6) and (7).
In addition, the exact inference is intractable and an approximate method has to be applied. In
this work a particle filter (PF) algorithm is used. It is based on sequential Monte Carlo sampling
and is described below.

In order to implement Bayesian filtering, we approximate the posterior distribution p(xk+1|yk+1)
using N particles xi

k+1, (i = 1, 2, . . . , N ), with corresponding importance weights wi
k+1, that is

replace the posterior distribution with the empirical distribution

PN(xk+1) =
N�

i=1

wi
k+1δ(xk+1 − xi

k+1), (10)
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where δ(·) is the Dirac delta function. The weights are computed using sequential importance
sampling as

wi
k+1 = wi

k

p(yk+1|x
i
k+1)p(x

i
k+1|x

i
k)

π(xi
k+1|x

i
k, yk+1)

, (11)

where π(xk+1|xk, yk+1) is the importance distribution such that samples from it can be easily
generated.

In general, choosing the optimal importance distribution is rather difficult so for simplicity,
the common choice is to apply the transition density as the importance density

π(xi
k+1|x

i
k, yk+1) = p(xi

k+1|x
i
k), (12)

that yields a simple equation for computing weights in the next time step as

wi
k+1 = wi

k p(yk+1|x
i
k+1). (13)

Note that these weights are normalized and satisfy 0 ≤ wi
k ≤ 1 and

�N
i=1 w

i
k = 1.

The initial weights are uniform with values wi
1 = 1/N but later during recursive computa-

tions they become far from uniform leading to particles degradation (few particles with large
weights). As a result the empirical distribution becomes very poor approximation of the state
variables distribution p(xk+1|Y1:k+1). To overcome this particular degradation problem, a se-
quential resampling procedure is applied. The resampling procedure regenerates the set of
particles by replicating the particles with high importance weights and removing samples with
low weights.

Finally, the basic particle filter algorithm is as follows. It starts with a population ofN initial-
state samples, created by sampling from the prior p(x1). Then the prediction-update-resample
cycle is repeated for each time step [6]:

1. Each sample is propagated forward by sampling the next state value xk+1, given the cur-
rent value xk for the sample, based on the transition model p(xk+1|xk).

2. Each sample is weighted by the likelihood it assigns to the new evidence, p(yk+1|xk+1).

3. The population is resampled to generate a new population of N samples. Each new
sample is selected from the current population; the probability that a particular sample is
selected is proportional to its weight. The new samples are unweighted.

A flowchart of the proposed identification algorithm is shown in Fig. 1.

3 NUMERICAL EXPERIMENTS

The effectiveness of the proposed method is assessed by performing numerical exercises for
an orthotropic plate. In the experiments, the material properties of the plate (Young’s moduli,
Poisson’s ratios and mass density) and the plate thickness are taken from [1], see Tab. 1 for
exact values of these parameters.

Having defined the plate parameters, a pseudo-experimental fundamental antisymmetric dis-
persion curves A0 were computed using numerical approach described in [2]. In this approach
it is assumed that the dynamic problem is formulated as a plain strain problem and solved by
numerical simulations via commercial finite element code Abaqus in a few series of modal an-
alyzes. The numerical model in Abaqus for a 30mm by 1.2mm plate segment has 3600 square
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Figure 1: Flowchart of particle filter-based algorithm for elastic parameters identification

CPE4 elements with characteristic length le = 0.1mm. These dispersion curves were approx-
imated by using basis functions and corresponding parameters that were found with the least
squares method. The parameters were treated as the observed variables y. Fig. 2 presents fun-
damental dispersion curve A0 for the orthotropic plate with elastic constants defined in Tab. 1
and its approximation using 5 basis functions proposed in [4]:

k(f) = φ0w0 + w1φ1 + w2φ2 + w3φ3 + w4φ4, (14)

where k denotes wave number corresponding to frequency f and φi(f) denotes i-th basis func-
tion. These basis functions are defined as:

φ0 = 1, φ1 = f, φ2 = f2, φ3 = 1/f, φ4 = tan(0.65f). (15)

3.1 Young’s modulus E1 identification

Initial and uncertain knowledge about Young’s modulus E1 is represented by a prior distri-
bution p(x0). We applied a Gaussian prior probability density distribution p(x0) = N(µ0, σ

2
0),

4250



Marek Słoński

Table 1: Assumed values of orthotropic plate parameters applied in numerical experiments

Parameter E1(GPa) E2(GPa) ν12(-) ν23(-) G1(GPa) ρ(kg/m3) h(mm)

Assumed value 131 8 0.337 0.3 4.23 1560 1.2

Figure 2: Fundamental dispersion curve for orthotropic plate with thickness h=1.2mm and its approximation using
5 basis functions

with mean value µ0 = 131.0 GPa and standard deviation σ0=1.3 GPa (coefficient of variation
(CoV) was 1%). Fig. 3 shows the plot of the prior (as a dashed line).

The approximate posterior distribution of Young’s modulus given pseudo-experimental dis-
persion curves PN(xk|yk) in the k-th step was computed using the particle filter-based identifi-
cation procedure described above. In experiments, we applied N = 2000 particles to obtain the
approximate posterior distribution and the number of steps in the sequential identification was
set to K=500. Fig. 4 shows the sequential nature of the elastic constant identification process
by plotting the evolution of the mean value of the posterior distribution and the corresponding
plot for the one-standard deviation error bars as a function of the step number. There is also
shown a solid horizontal line representing the reference Young’s modulus value (131.0 GPa)
applied in numerical experiments. From the plot, it may be observed that the estimation process
converged to the reference value quite rapidly (in about 100 iterations).

Tab. 2 presents statistical parameters of prior and posterior distributions in the form of mean
values, standard deviations and coefficients of variation (COV) are given. From the table, it
can be stated that the final mean value of the posterior distribution is the same as the reference
value. Moreover, the coefficient of variation decreased from 1% for the prior distribution to
only 0.15% for the final posterior distribution. Fig. 3 shows the final one-dimensional posterior
distribution together with the prior distribution.
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Figure 3: Prior and posterior probability density distributions for Young’s modulus E1. Prior (dashed line) has
mean value µprior = 130.0 GPa and standard deviation σprior=1.31 GPa (coefficient of variation (CoV) is 1%).

Posterior (solid line) has mean value µpost = 131.0 GPa and standard deviation σpost=0.19 GPa (coefficient of
variation (CoV) is 0.15%)

4 FINAL CONCLUSIONS

This paper presents an application of Bayesian methods and particle filter for reconstruc-
tion of elastic parameters of plates. The proposed procedure is based on the comparison of
experimental and numerical dispersion curves from guided Lamb waves monitoring.

Taking into account the assumed experimental errors and considering propagation of errors
in the sequential estimation, the uncertainty in the identified value of Young’s modulus E1 is less
than 0.5%. More results for other elastic parameters will be presented during the conference.
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Table 2: Statistical parameters of prior and posterior distributions for Young’s modulus (mean value, standard
deviation and coefficient of variation (COV))

Parameter Prior Posterior

Mean value (GPa) 130.0 131.0
Standard deviation (GPa) 1.3 0.19
COV (%) 1.0 0.15
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Figure 4: Plot of evolution of mean value of posterior distribution for Young’s modulus and corresponding one-
standard deviation error bars (solid horizontal line represents Young’s modulus value (131.0 GPa) assumed in
numerical experiments)
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displacement fields. Experimental Mechanics, pages 635–648, 2013.

[4] E. Pabisek, Z. Waszczyszyn, and Ł. Ambroziński. A semi-analytical method for identifica-
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