

Scientific visualisation in 2D and 3D

Roman Putanowicz R.Putanowicz@L5.pk.edu.pl

Some rights reserved (CC) 2010. See "License" slide.

Right tool for the right job

- gnuplot All sorts of 2D visualisation and simple 3D visualisation
- octave More advanced 2D visualisations that require extensive data manipulations
- octave + octaviz Simple 3D programming
- VTK Advanced computer graphics and 3D programming
- ParaView, OpenDX 3D visualisations

Part I Gnuplot Overview

3

Gnuplot

- Home page: http://www.gnuplot.info/
- ▶ Portable: MS Windows, GNU/Linux, UNIX, and OSX.
- Book: "Gnuplot in Action. Understanding Data with Graphs", Philipp K. Janert, Manning Publications Co., 2009

Plotting functions given by formulas

Axes setup

Labels and graph tytle

Setting lines and markers style

Legend

Plotting many functions

Filled functions

Transparent filling

Prepared for lectures in "Selected Topics in Computer Science" as a part of Computational Engineering MSc program at Civil Engineering Faculty, Cracow University of Technology

Saving figures

Selected formats:

Nazwa	Description
canvas	HTML Canvas object
cgm	Computer Graphics Metafile
corel	EPS format for CorelDRAW
dumb	ascii art for anything that prints text
dxf	dxf-file for AutoCad (default size 120x80)
fig	FIG graphics language for XFIG graphics editor
gif	GIF images using libgd and TrueType fonts
jpeg	JPEG images using libgd and TrueType fonts
latex	LaTeX picture environment
pdfcairo	pdf terminal based on cairo
png	PNG images using libgd and TrueType fonts
pngcairo	png terminal based on cairo
postscript	PostScript graphics, including EPSF embedded files (*.eps)
svg	W3C Scalable Vector Graphics driver
w×t	wxWidgets cross-platform windowed terminal
×11	X11 Window System

Saving in vector formats

fig

gnuplot> set output "rys.fig"
gnuplot> set term fig
Terminal type set to 'fig'
Options are 'color small pointsmax 1000 landscape inches \
 dashed textnormal font "Times Roman" fontsize 10 linewidth 1\
 depth 10 version 3.2'

PostScript

gnuplot> set output "rys.ps"
gnuplot> set term postscript color
Terminal type set to 'postscript'
Options are 'landscape noenhanced defaultplex leveldefault color \
 colortext dashed dashlength 1.0 linewidth 1.0 butt noclip \
 palfuncparam 2000,0.003 "Helvetica" 14

Saving in raster formats

GIF

gnuplot> set output "rys.gif"
gnuplot> set term gif
Terminal type set to 'gif'
Options are 'truecolor nocrop \
font /usr/share/fonts/truetype/ttf-liberation/LiberationSans-Regular.ttf 12\
size 640,480 '

PNG

gnuplot> set output "rys.png"
gnuplot> set term png
Terminal type set to 'png'
Options are 'truecolor nocrop
font /usr/share/fonts/truetype/ttf-liberation/LiberationSans-Regular.ttf 12\
size 640,480 '

Data visualisation

Operation on data stream and data filtering

Gnuplot provides tools for filtering input data stream and selecting data to be plotted.

- selecting data records option every
- selecting data columns option using
- selecting data sets option index
- data interpolation and approximation option smooth
- filtering through external programs

Overlays

Subwindows

- 1 set multiplot layout 2, 2
- 2 set key outside center top
- 3 plot sin(x)
- 4 plot cos(x)
- 5 plot x*x
- 6 plot 1/(1+x**2)

Histograms

Script and data taken form gnuplot distribution.

Histograms

- ¹ set boxwidth 0.9 absolute
- $_{\scriptscriptstyle 2}$ set style fill solid 1.00 border -1
- $_{3}$ set style histogram clustered gap 1 title offset character 0, 0, 0
- 4 set datafile missing '-'
- 5 set style data histograms
- $_{\rm 6}~$ set xtics border in scale 1,0.5 nomirror rotate by -45~ offset character 0, 0, 0
- 7 set xtics ("1891-1900" 0.00000, "1901-1910" 1.00000, "1911-1920" 2.00000,"1921-1930" 3.00000, "1931-1940" 4.00000, "1941-1950" 5.00000, "1951-1960" 6.00000, "1961-1970" 7.00000)
- set title "US immigration from Northern Europe\n Plot selected data columns as histogram of clustered boxes"
- 9 set yrange [0.00000 : 300000.] noreverse nowriteback
- ¹⁰ plot 'immigration.dat' using 6:xtic(1) ti col,
 - '' u 12 ti col, '' u 13 ti col, '' u 14 ti col

Pie plots

Plotting parametric curves

Interactive elements

New terminal type based on wx library allows some user interaction like rotating, panning and zooming with mouse. It also provides the way to define keyboard short-cuts for user commands.

Visualisation of function of two variables

Command line history

- history show the complete history
- history 5 show last 5 entries in the history
- history quiet 5 show last 5 entries without entry numbers
- history "hist.gp" write the complete history to file hist.gp
- history "hist.gp" append append the complete history to file hist.gp
- history 10 "—head -5 >>diary.gp" write 5 history commands using pipe
- history 10 "hist.gp" write last 10 commands to file hist.gp
- history ?load show all history entries starting with "load"
- history ?"set c" like above, several words enclosed in quotes
- hi !reread execute last entry starting with "reread"
- hist !"set xr" like above, several words enclosed in quotes
- hi !hi guess yourself :-))

Gnuplot scripts

Gnuplot scripts can be run

- in terminal
- during interactive gnuplot session using load command.

Other gnuplot features

More gnuplot features can be seen at gnuplot demo pages: http://gnuplot.sourceforge.net/demo/

Part II VTK Overview

VTK – Visualization Toolkit

The Visualization ToolKit (VTK) is an open source, freely available software system for 3D computer graphics, image processing, and visualization.

- Book: "The Visualization Toolkit, An Object-Oriented to 3D Graphics, 2nd edition", Prentice-Hall
- Software: http://www.kitware.com/vtk.html

VTK Applications

VTK Applications – cont.

VTK Applications – cont.

VTK Applications – cont.

VTK on jinx

Which packages: dpkg $-1 \mid \text{grep} - i \text{ vtk}$

- Visualization Toolkit A high level 3D visualization library
- ▶ VTK header files for building C++ code
- Python bindings for VTK
- Tcl bindings for VTK
- VTK class reference documentation
- ► C++, Tcl and Python example programs/scripts

Technical Overview

- C++ implementation
- Open source
- Scripting interface: Tcl/Tk, Python, Java
- Portable
- Supports parallelization
- Commercial support

- Not super-fast graphics engine
- Very large not a toy
- Requires decent system to use it effectively

VTK: 3D Graphics

- Surface Rendering: OpenGL, gl, starbase, xgl
- Volume Rendering
 - Flexible ray casting implementation
 - Support for VoumePRO volume rendering hardware
 - Supports mixing opaque surface geometry and volume rendering
- Rendering primitives:

points, lines, polygons, tringle strips, volumes

VTK: Datasets Types

Structured Grid

Unstructured Points U

Unstructured Grid

Prepared for lectures in "Selected Topics in Computer Science" as a part of Computational Engineering MSc program at Civil Engineering Faculty, Cracow University of Technology

VTK: Atribute Types

- Scalars (single valued + grayscale, grayscale-alpha, rgb, rgb-alpha)
- Vectors
- 3x3 Tensors
- Texture Coordinates (1-3D)
- Field Data

VTK: Scalar Algorithms

VTK: Scalar Algorithms – cont.

VTK: Scalar Algorithms – cont.

VTK: Scalar Algorithms – cont.

VTK: Vector Algorithms

VTK: Vector Algorithms - cont.

VTK: Tensor Algorithms

VTK: Multidimensional solution

VTK: Modeling Algorithms

VTK: Modeling Algorithms - cont.

VTK: Modeling Algorithms - cont.

VTK:Imaging

VTK: Visualization Pipeline

- Demand-driven data-flow with automatic network updates
- Network looping and feedback supported
- Supports multiple input/multiple output filters

VTK: Programming - Tcl/Tk

- 1 vtkSphereSource sphere
- ² sphere SetRadius 1.0
- 3 sphere SetThetaResolution 18
- 4 sphere SetPhiResolution 18
- 5 vtkPolyDataMapper map
- 6 map SetInput [sphere GetOutput]
- 7 vtkActor aSphere
- 8 aSphere SetMapper map
- 9 [aSphere GetProperty] SetColor 0 0 1
- 10 vtkRenderWindow renWin
- 11 vtkRenderer ren1
- 12 renWin AddRenderer ren1
- 13 vtkRenderWindowInteractor iren
- 14 iren SetRenderWindow renWin
- 15 ren1 AddActor aSphere
- ¹⁶ ren1 SetBackground 1 1 1
- 17 renWin Render
- 18 wm withdraw .

Mayavi

- free scientific data visualizer
- implemented in Python + Tkinter + VTK
- A pipeline browser can browse and edit objects in the VTK pipeline.
- Visualize computational grids.
- Visualize scalar, vector and tensor data.
- A modular design so you can add your own modules and filters.
- Output to: PostScript, PPM/BMP/TIFF/JPEG/PNG, Open Inventor, VRML or RenderMan.

Mayavi - examples

Prepared for lectures in "Selected Topics in Computer Science" as a part of Computational Engineering MSc program at Civil Engineering Faculty, Cracow University of Technology

Credits

Most of the figures in this part and Tcl/Tk example come from VTK distribution.

Part III VTK Programming

VTK: Visualization Pipe

1	<pre>#include "vtkConeSource.h"</pre>
2	<pre>#include "vtkPolyDataMapper.h"</pre>
3	<pre>#include "vtkRenderWindow.h"</pre>
4	<pre>#include "vtkRenderWindowInteractor.h"</pre>
5	#include "vtkActor.h"
6	<pre>#include "vtkRenderer.h"</pre>
7	
8	<pre>int main(int argc, char *argv[]) {</pre>
9	
10	vtkConeSource *cone =
11	vtkConeSource::New();
12	cone—>SetHeight(3.0);
13	cone—>SetRadius(1.0);
14	cone - > SetResolution(5);
15	vtkPolyDataMapper $*$ coneMapper $=$
16	vtkPolyDataMapper::New();
17	coneMapper—>SetInput(
18	cone—>GetOutput());
19	
20	vtkActor $*$ coneActor $=$
21	vtkActor::New();
22	coneActor—>SetMapper(coneMapper);

vtkRenderer *ren1=
vtkRenderer::New();
ren1—>AddActor(coneActor);
ren1—>SetBackground(0.1, 0.2, 0.4);
vtkRenderWindow *renWin =
vtkRenderWindow::New();
renWin->AddRenderer(ren1);
renWin->SetSize(400, 400);
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New(); iron > SetPonderWindow((conWin);
iren=>SetRenderWindow(renWin),
iren—>Initialize(); iren—>Start();

```
return 0;
```


VTK: Programming - Makefile

```
1
      CXX = g++ -g - Wall
 2
 3
      # for queen VTK 4.2
 4
      \#INCLUDES = -I. -I/home/pracow/putanowr/include/vtk
 5
      \#LDFLAGS = -L/home/pracow/putanowr/lib/vtk \setminus
 6
                                -L/usr/X11R6/lib
 7
      \#LDADD = -lvtkCommon - lvtkIO - lvtkGraphics \
 8
               -lvtkRendering -IGL -IX11 -Im
 9
10
      #for iinx VTK 3.2
11
      INCLUDES = -I. -I/usr/include/vtk
      LDFLAGS = -L/usr/lib/vtk - L/usr/X11R6/lib
13
      LDADD = -IVTKCommon -IVTKGraphics -IGL \
              -IXt -IX11 -Im
14
15
16
      #for foo VTK 4.2
      \#INCLUDES = -I. -I/opt/include/vtk
18
      \#LDFLAGS = -L/opt/lib/vtk - L/usr/X11R6/lib
      \#LDADD = -lvtkCommon - lvtkIO - lvtkGraphics \setminus
19
20
               -lvtkRendering -IGL -IX11 -Im
21
22
      %.o : %.cxx
23
      $(CXX) -c $(INCLUDES) $< -o $@
24
25
      Cone1 : Cone1.o
26
      $(CXX) $^ $(LDFLAGS) $(LDADD) - o $@
27
28
      PHONY : clean distclean
29
      clean :
30
      /bin/rm -rf *.o
31
      distclean :
32
      rm -f Cone1
```


VTK: Programming - Tcl/Tk

1	nackage require vtk
2	package require vikinteraction
4	package require vikinteraction
3	
4	vtkConeSource cone
5	cone SetHeight 3.0
6	cone SetRadius 1.0
7	cone SetResolution 5
8	
9	vtkPolyDataMapper coneMapper
10	coneMapper SetInput [cone GetOutput]
11	
12	vtkActor coneActor
13	coneActor SetMapper coneMapper
14	
15	vtkRenderer ren1
16	ren1 AddActor coneActor
17	ren1 SetBackground 0.1 0.2 0.4

18	vtkRenderWindow renWin
19	renWin AddRenderer ren1

20 renWin SetSize 400 400

22 vtkRenderWindowInteractor iren

23 iren SetRenderWindow renWin24 iren Initialize

25

21

26 wm withdraw .

Part IV OpenDX Overview

OpenDX

Open source software project based on IBM's Visualization Data Explored (DX)

- Powerful, full-featured visualization system
- Visual programming, advanced GUI
- Modular design, object-oriented, self-describing data model
- C implementation
- Scripting
- Python and Tcl/Tk wrappers

Visual Programs – Gradient

Visual Programs – Gradient

Visual Programs – Gradient

×	MapToPlane	;			不 _ [×
Notation:	MapToPlane	;				
Inputs: Name	Hide	Туре	Source		Value	
🔳 data		data field	Import		NULL	
🗆 point		vector			(center of object)	
🗆 normal		vector			[0 0 1]	
Outputs:						
Name	Туре		Destination	Cache		
plane	data	field	Gradient	All Re	sults 😑	
ОК	Apply	Expand	Collapse Description	Help on Syntax	Restore Can	el

Visual Programs – Streamlines

Visual Programs – Streamlines

Visual Programs – isosurfaces

Visual Programs – Isosurfaces

Credits

All figures in this presentation come from OpenDx distribution.

References

- 1. Gnuplot home page http://www.gnuplot.info
- 2. Gnuplot demo page http://gnuplot.sourceforge.net/demo
- 3. GNU Octave http://www.gnu.org
- 4. Octaviz http://octaviz.sourceforge.net/
- 5. VTK The Visualization Toolkit http://www.vtk.org
- 6. OpenDX http://www.opendx.org
- 7. Own materials

Thank you for your attention

License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy of this license, either visit http://creativecommons.org/licenses/by-sa/3.0/deed.en; or, send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

You are free:

- ▶ to share to copy, distribute and transmit the work
- to remix to adapt the work

Under the following conditions:

- attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- share alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.