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1. Introduction 
 

This work is devoted to some recent developments in the Higher Order Approximation 
introduced to the Meshless Finite Difference Method (MFDM, [75]), and its application to solution of 
boundary value problems in mechanics. The MFDM is one of the basic discrete solution approaches to 
analysis of the boundary value problems of mechanics. It belongs to the wide group of methods called 
nowadays the Meshless Methods (MM, [4, 8, 19, 26÷28, 52, 59, 75]). The MM are more and more 
developed contemporary tools for analysis of boundary value problems. In the meshless methods, 
approximation of the sought function is described rather in terms of nodes than by means of any 
imposed structure like elements, regular meshes etc. Therefore, the MFDM, using arbitrarily irregular 
clouds of nodes and Moving Weighted Least Squares (MWLS, [40, 41, 42, 49, 50, 54, 105]) 
approximation falls into the category of the MM, being in fact the oldest [33, 53÷57, 70] and, possibly 
the most developed one of them. The recent state of the art in the research on the MFDM, as well as 
several possible directions of its development are briefly presented in Chapter 2. 

 
In the present thesis, considered are techniques which lead to improvement of the MFDM 

solution quality.  This may be done, in the simplest case, by introducing more dense, regular or 
irregular, clouds of nodes. They may be generated a’priori or found as the result of an h-adaptation 
process. The other way is to raise the rank of the local approximation of the sought function (p-
approach). 

In the standard MFDM, differential operators are replaced by finite difference ones, with a 
prescribed approximation order. There are several techniques that may be used for raising this order. 
The standard one assumes introducing additional nodes (or degrees of freedom) into a simple MFD 
star, and raising order of its approximation [15, 29]. These aspects are discussed in Chapter 3 in more 
detailed way. 

 The concept of the Higher Order Approximation (HOA, [75, 76, 83, 87, 88, 90, 91, 92, 94, 
95, 96, 98]), used in this thesis, is based on consideration of additional terms in the Taylor expansion 
of the sought function. Those terms may consist of HO derivatives as well as their jump terms, and/or 
singularities. They are used here as correction terms to the standard meshless FD operator. Correction 
terms allow for using of the same standard order MFD operator, and modifying only the right hand 
side of the MFD equations. It is worth stressing that the final MFD solution does not depend on the 
quality of the MFD operator, it suffers only from a truncation error of the Taylor series expansion. 

 
The main objective of this work is a development of the HO correction terms approach in the 

MFDM, and demonstration that such move may improve, in many ways, efficiency and solution 
quality of this method. The HO correction terms may be applied in many aspects of the MFDM 
solution approach. The following aspects may be distinguished here: 

 
- improvement of the MFD approximation inside the domain, 
- improvement of the MFD approximation on the domain boundary, 
- solution precision and convergence, 
- improvement of the a’posteriori error (solution and residual) estimation, given in the local or 

global formulation, 
- improvement of the residual error based generation criterion of new nodes, in the adaptation 

process, 
- improvement of the multigrid solution approach, allowing for effective MFD analysis on a set 

of regular or irregular meshes. 
 
Beside the above mentioned applications of the HO correction terms to development of algorithms 
used for several aspects of  MFDM analysis, in the present work considered are 
 

- computational implementation of these MFDM algorithms, 
- examination of the above mentioned aspects on 1D and 2D benchmark tests, 
- application of the MFDM to some boundary value problems in mechanics. 
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A variety of 1D and 2D benchmark tests was performed in order to examine solution algorithms 
developed. Among many investigated aspects, the most interesting seem to be 
 

- quality of solution algorithms for local and various global boundary value problem 
formulations, 

- influence of mesh irregularity on solution results, 
- improvement of the MWSL approximation using the HO terms, 
- solution quality, when using HO terms, 
- boundary conditions discretization, using HO terms, and various boundary techniques, 
- both the solution and residual convergence, obtained on a set of regular and irregular meshes, 
- revision of the commonly used global a’posteriori error estimators, with a new formulation for 

HO terms, taken into account, 
- estimation of the a’posteriori solution and residual errors, 
- development of error indicators for irregular meshes, 
- adaptive mesh refinement, 
- multigrid solution approach. 

 
The features of the complete MFDM solution approach, listed above, are consequently introduced, 
discussed and tested in the following Chapters. Each Chapter contains a theoretical part, where the 
original concepts are outlined, and appropriate notions are defined. The second part of each Chapter is 
devoted to numerous tests. 
 
In Chapter 2, briefly presented are historical background and main problems of the standard MFDM 
solution approach [75]. Comparison is made between the MFDM the and classic FDM, based on the 
regular meshes only. 
 
In Chapter 3, given is the general formulation of the Higher Order approximation provided by 
correction terms. It is applied then to 1D and 2D linear boundary value problems, posed in both the 
local and global formulations. Chapter 3 contains also many solution algorithms, which were 
successfully used in the computer implementation of the MFDM. 
 
Chapter 4 deals with the problem of effective boundary discretization. Especially investigated are the 
following concepts: standard discretization of essential and natural boundary conditions, HO 
approximation for the boundary MFD operators, as well as the optimal MFD discretization in the 
boundary neighbourhood. 
 
In Chapter 5 discussed are the effective a’posteriori estimation [2, 16, 40] of the solution and residual 
errors. Local and global (in the integral forms) estimations may use the HO correction terms as a high 
quality reference solution. Especially investigated are well known global estimators [2, 120], initially 
designed for the FEM analysis. 
 
Adaptation, mostly in the h-sense [7, 17, 18], is the main topic of Chapter 6. Here, defined are 
modified generation criteria of new nodes. They are based on an improved estimation of the residual 
error. Those criteria, combined with some others, e.g. smoothness ones, allow for the optimal choice 
of nodes concentration zones, where either the solution or the right hand side of the differential 
equation exhibits large gradients. Moreover, defined and tested are several new global error indicators, 
possibly more sensitive for mesh irregularity than the classic integral ones. They are applied for 
convergence estimation of both the solution and residuals. 
 
In Chapter 7,  presented is the multigrid solution approach [10, 29, 51, 75]. It may use a set of regular 
or irregular meshes. The approach allows for effective solution of the MFD equations, and is based on 
the prolongation, and restriction procedures [51, 85, 75], for two subsequent neighbour meshes. Use of 
the HO correction terms allows for obtaining the MFD solution in the multigrid cycle for any 
arbitrarily chosen local approximation order [76, 93]. 
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In Chapter 8, considered is application of the HO MFDM approach developed here to solution of 
several simple boundary value problems in mechanics. Analysed are those chosen tasks, that require 
numerous, efficient solutions of high precision like problems with geometrical and physical non-
linearity, fuzzy sets analysis, Monte Carlo simulation in reliability estimation. Among 2D problems 
analysed was the prismatic bar and railroad rail subjected to torsional moment as well as nonstationary 
heat flow in the railroad rail which may be considered as the part of the residual stresses analysis. 
Brief classification of considered here 1D and 2D problems is presented in Tab.1.1. 
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Tab.1.1 Review of analysed 1D and 2D problems 

 
In Chapter 9, briefly presented is the programming environment that was applied for designing and 
creating the variety of test programs. Those programs were independently developed for 1D and 2D 
problems. Obtained results are consequently presented in the following Chapters. 
 
In the last Chapter 10, a brief summary of the whole research, reported here, is presented. Outlined are 
original concepts and ideas as well as those problems that caused difficulties. Several general remarks 
are made about implementation of the solution algorithms developed.  Future research plans are also 
mentioned. 
 
Finally, the present Thesis include references, list of the most important notations as well as enclosed 
programs, for analysis 1D and 2D benchmarks. 
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2. Meshless Finite Difference Method MFDM 
 

 
2.1 Introduction 
 

The Finite Difference Method FDM is one of the oldest numerical methods of analysis of 
boundary value and initial value problems, used long time before the computer age. However, its 
power and scope of applications were practically limited to the regular meshes and regular shaped 
domains. Moreover, its full automation was very difficult to perform. Rapid development of the 
computer technology since the early sixties, resulted in development of some new methods as well as 
in the revaluation of the existing computational methods. Since the invention of the Finite Element 
Method (FEM) in late 1950s, it has become the most popular and widely used method in engineering 
computations. Its well deserved successes in effective analysis of boundary value problems caused a 
long lasting stagnation in other discrete methods, including the FDM. However all drawbacks of the 
classical FDM might be removed after the effective generalisation for irregular meshes. Following the 
earlier studies in the seventies [33, 37, 102] and the recent developments like error analysis, adaptivity 
and multigrid solution approach, the generalised, Meshless Finite Difference Method (MFDM, [75]), 
like the FEM, presents nowadays a general solution tool of boundary value problems displaying a 
variety of useful features. One may notice, however, that nowadays the MFDM falls into the wide 
class of the so called meshless methods, being in fact the oldest and, therefore, possibly the most 
developed, and effective one of them. 
 
2.2 Main advantages and disadvantages of the classical FDM 
 

The classical FDM [75, 77] is a very effective tool for analysis of the boundary value 
problems posed in regular shape domains. Especially convenient is then generation of the mesh, FD 
stars, formulas and equations. Moreover, for regular meshes there are many mathematical proofs 
regarding the stability and convergence of the method as well as the existence, and uniqueness of the 
solution. However, long time practise also shown several disadvantages of the FDM, which cannot be 
overcome when using only classical finite difference solution approach. 

 
(i) The classical version of the FD method uses only regular meshes of nodes, depending on 

the shape of the domain (rectangular, circular, triangular, etc.). Mesh generation inside the 
domain is very easy task: one has to assume the mesh type, and its modulus. The whole 
process complicates in the boundary zones. The problems arise in case of curvilinear 
boundaries, two situations which need individual treatment, are presented in Fig.2.1. This 
is the main reason for the reduced number of method applications. 

 

Ω

∂Ω

iP Ω

∂Ω

iP
boundary node

internal node

 

Fig.2. 1: Curvilinear boundary with the rectangular mesh 

 
(ii) Lack of possibility of local mesh refinement is another drawback of the classical FDM. 

Node insertion or shifting is not possible due to mesh regularity restriction. There are 
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many situations, when the local increase of mesh density is needed, e.g. for the purpose of 
better approximation with the limited number of unknowns, due to presence of 
concentrated loads, boundary corners, cracks, moving boundaries, etc as well as in the 
standard  h-adaptive solution approach. 

 
(iii) Additionally, it is very difficult in the FDM to couple domains with different dimensions, 

e.g. beam (1D) with plate (2D), beam and plate with foundation (3D) – there are lots of 
such typical situations in the mechanics of construction, especially in the global (weak) 
formulation of boundary value problem. 

 
(iv) Difficulties in method automation. 

 
This all makes classical FDM very difficult to automate for analysis of boundary value 

problems of any kind. These limitations make the FDM effective tool only for selected boundary value 
problem classes. Needed is generalisation of the FDM at least for the arbitrarily irregular meshes 
(clouds of nodes), and for the domains with arbitrary shapes. 

 
2.3 Historical background 
 

Though idea of irregular meshes is not new, a possibility of practical calculation was 
dependent on computer technique development. Evolution of irregular meshes starts from the mesh 
being partially regular in sub-domains (Fig.2.2a, [61]), then irregular, but with restricted topology, 
which allows for mapping onto the regular one (Fig.2.2b, [22]) to arbitrarily irregular cloud of nodes 
(Fig.2.2c).  

The basis of the MFDM was published in the early seventies. Fully arbitrary mesh, though for 
local formulation and the interpolation schemes  only, was firstly considered by P.S.Jensen [33]. The 
main disadvantage of his approach was frequent singularity or ill-conditioning of a control scheme. 
Several authors tried to develop an automatic procedure which avoids incorrect stars and thus 
improving the accuracy of the FD formulas. Perrone and Kao [102] proposed using of additional nodes 
in the FD stars, selected from the geometrical criterion.  The approach for FD analysis of boundary 
value problems posed in the variational form were considered first by R.A.Nay and S.Utku [70]. 
Those early formulations of the so called Generalised FMD were later extended and improved by 
many other researchers. The most interesting works were published by M.J. Wyatt, G. Davies, C.Snell 
[116, 117], P. Mullord [69], D.G. Vesey [114] and much later by B. Nayroles, G. Touzot and P. Villon 
[71]. It is worth mentioning here a contribution of the polish authors, Z.Kączkowski, R.Tribiłło, 
M.Syczewski and J.Cendrowicz [13, 37, 110, 111], in the early stage of this research. 

 
However, the initial concept of P.S.Jensen [33] was mainly developed throughout last thirty 

years by J.Orkisz [74] and his numerous co-workers (T.Liszka, W.Tworzydło, J.Krok, W.Cecot, 
W.Karmowski, J.Magiera, M.Pazdanowski, I.Jaworska, S.Milewski, [32, 36, 40, 41, 43, 44, 45, 46, 51, 
53 ÷ 57, 64 ÷ 66, 75 ÷ 100]). The most complete and general version of the MFDM, based on the 
arbitrary cloud of nodes (totally irregular meshes) and MWLS approximation appeared in the late 
seventies [53, 56]. At first, it concerned only local formulation of the boundary value problems [56]. 
Then the approach was generalised for problems posed in variational formulations [57], and non-linear 
problems [58], and later on for differential manifold [47, 48, 112, 113]. Further research included as 
follows the MFDM in data smoothing [36, 99], mesh generation [54, 56, 75], mathematical basis [16, 
75], various FEM/MFDM combinations [41, 44, 43, 42], mixed global – local MFDM formulation 
[36], error analysis [40, 75, 89, 91, 92, 96], the adaptive MFDM [51, 75, 80, 85, 92, 93, 94, 95, 96, 
100,] and multigrid solution approach [51, 75, 85, 100, 93]. Several general presentations of the 
MFDM were made in the last years, including [56, 75, 77, 78]. Nowadays, the MFDM, like the FEM, 
is an effective, general tool of linear and non-linear analysis of the wide class of boundary value 
problems. Each boundary value problem formulation involving derivatives may be effectively 
analyses by means of the MFDM. 
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a) mesh partially regular in subdomains

c) arbitrarily irregular mesh

b) irregular mesh with mapping restrictions

 

Fig.2. 2: Various irregular meshes 

 
2.4 MFDM as the oldest meshless method 
 

A characteristic feature of the FEM [119] is that it divides a continuum domain into the set of 
discrete elements, with nodes at their vertices. The individual elements are connected together by a 
topological map, constituting structured mesh. This causes problems with insertion and removal or 
shifting of arbitrary nodes. Additionally, the approximation may be spanned over various types of the 
elements,  which complicates division and unification of elements, needed e.g. in problems with 
moving boundary. Remedy is to use approximation built in terms of nodes only which makes 
insertion, removal, and shifting of nodes much easier. Therefore, it would be computationally effective 
to discretize a continuum domain only by a cloud of nodal points, or particles, without mesh structure 
constraints imposed. This assumption holds in a wide group of methods, called nowadays the meshless 
ones (MM).  

This characteristic feature of all meshless methods [4, 8, 19, 26÷28, 52, 59, 75] is formulated 
by Idehlson and Belytschko [8], “meshless are these methods, in which the local approximation of the 
unknown function is built only in terms of nodes”.  Thus meshless methods use unstructured clouds of 
nodes, that may be distributed totally arbitrarily, without any structure imposed a’priori, like domain 
division into elements or mesh regularity, or any mapping restrictions. In such context, the MFDM 
presents nowadays the oldest (at least since 1972), and therefore, possibly the most developed as well 
as effecitve meshless method. 

For illustration purpose, a comparison of the FEM and MM concepts of domain discretization, 
mentioned above, for a 2D problem, is shown in Fig.2.3. The discretization was designed [8] for the 
FEM analysis, though here MM analogy is also shown. 

 In the meshless methods, the local approximation is prescribed in terms of nodes and is 
generated by various ways like the Moving Weighted Least Squares (MWLS) approximation [40, 41, 
42, 49, 50, 54, 105] or interpolation by kernel estimates or partition of unity [4, 8, 59, 60, 68]. 
Generally, the name “meshless” methods is used then, though weak interrelation between meshless 
methods developed so far results in no or not sufficient advantages taken from the earlier research 
already done A large number of rediscoveries happens then. Sometimes old-known methods come 
again but under the different names. Already several attempts have been made [23, 52, 59, 75, 84] to 
classify the existing meshless methods. Various classification criteria have been used, most often a 
local approximation type. 
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The meshless methods have numerous useful features, which make them effective and 
versatile tool in many applications. Among them, one may mention the following ones 
 

• They exhibit no difficulties while dealing with large deformations, since the connectivity 
among nodes is generated as part of the computation and can be changed or modified with 
time, 

 
• Simplification of analysis involving moving boundary (crack development, elastic-plastic 

boundary, contact of deformable bodies, fluid free surfaces, etc.), since the mesh refinement 
mechanism is applied with much ease. 

 
• Effective control of the solution precision, because nodes may be easily added (h – adaptivity) 

in areas, where mesh refinement is needed, 
 
• Dealing with enrichment of fine scale solutions, e.g. with discontinuities and/or singularites 

introduced, into the coarse scale, 
 

• No difficulties in combination with other discrete methods, 
 

• Accurate discrete representation of geometric object, linked more effectively with a CAD 
systems, since it is not necessary to generate an element mesh. 

 

MESHLESS
METHODS

FINITE ELEMENT
METHOD

 

Fig.2. 3: Comparison between the concepts of the FEM and MM 

 
However, meshless methods, with some exceptions like MFDM, are in general of lower 

computation speed, when compared with the FEM. Problems may arise while dealing with 
interpolation, differentiation or integration as well as disretization of the boundary conditions. The 
MFDM, with long time practise and experience as well as large number of recent publications, may be 
even more effective and versatile tool in many fields of numerical analysis, as the FEM and several 
other meshless methods used. Some examples of less typical domains of applications are e.g.: 

 
(i) reinforced pneumatic structures (differential manifold, large deformations) [47, 113] 
(ii) railroad rail and vehicle wheel analysis [86] including 
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- 3D elastic analysis (Generalised Finite Strip method, arbitrary high precision approach 
with error control) [42, 99], 

- residual stress analysis (shakedown, mixed global – local approach) [86, 99] 
 
(iii) roller straightening of railroad rails (3D highly non-linear, transient boundary value 

problem) [12] 
(iv) reservoir simulation – (adaptive approach to singularity) [43, 45, 85], 
(v) physically based enhancement of experimental measurements (data smoothing, 

inverse, ill-conditioned problems) [36]. 
 
2.5 Formulations of the boundary value problem for finite difference analysis 
 

The MFDM may deal with boundary value problems posed in every one formulation [75], 
where the differential operator value at each required point may be replaced by a relevant difference 
operator involving a combination of searched unknowns of the method. Using, difference operators 
and an appropriate approach, like collocation, Petrov-Galerkin, and functional minimisation, 
simultaneous MFDM equations may be generated for any boundary value problem analysed.  

Several types of boundary value problems formulation are briefly presented here including the 
local (strong) formulation, and some global (weak) ones. 

The local formulation is given as a set of differential equations and appropriate boundary 

conditions. In the considered domain nΩ ⊂ ℜ  with boundary  ∂Ω  a function ( )u P  is sought at each 
point P, satisfying equations 

 
foru f P= ∈ΩL                       (2.1) 

forbu g P= ∈∂ΩL                                                                          (2.2)

   
where L  and bL  are given differential operators, inside the domain and on its boundary respectively, 

and  f, g  are known functions of  point  P. 
 
However, many engineering applications involve boundary value problems given in the weak, 

global form. Such formulations may be analysed by the MFDM nowadays [4, 14, 75]. They may be 
posed either in the form of a functional optimisation (mainly for the self-coupled problems) or more 
general, as variational principles (e.g. the principle of virtual work) [4, 75]. 
 

In the first case, considered is minimisation of a functional given in the general form 
 

1
( ) ( , ) ( )

2
I u u u u= −B L                             (2.3)                                                                

 
satisfying boundary conditions (2.3). 

In terms of mechanics, the first bilinear term B  in the energy functional (2.3) represents 
internal energy of the system, while the second one, L , is the work done by external forces. 

Formulation (2.3) may be given either as an unconditioned optimisation problem ( nu V∈ ⊂ ℜ ), 
when extremum of  u is sought in the whole solution space V, or as a constrained optimisation 
problem ( admu V V∈ ⊂ ), when extremum of u is sought in the subspace admV , determined by the 

given constraints. Those constrains may be given globally, e.g. in the weak, integral form, or may be 
defined locally - in this particular case, the global – local formulation is considered.  
 

In the second case, variational principle in the general Petrov-Galerkin form is considered 
 

( , ) ( ) for admu v v v V= ∈B L                                (2.4a)  
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where ( )u u P=  is a searched trial function, and ( )v v P=  is a test function from the admissible space 

admV . The variational form may have symmetric (Bubnov-Galerkin) or non-symmetric character, 

depending on the type of the form ( , )u vB . When it is derived directly from the (2.1), e.g.  
 

( , ) for admu v u v d v V
Ω

= ⋅ Ω ∈∫B L                     (2.4b) 

 
a first order non-symmetric form (2.4a) is considered, whereas, after differentiation by parts and taking 
advantage of conditions (2.2),  one may derive the symmetric form, e.g.  
 

( , ) for admu v u v d u v d v V
Ω ∂Ω

= − ⋅ Ω + ⋅ ∂Ω ∈∫ ∫u v u
B L L L       (2.4c) 

 
called the Galerkin one. Further differentation by parts yields the next non-symmetric forms. 

The approaches (2.3) and (2.4) involve integration over the domain Ω  and, therefore, are 
called the global ones. Their equivalent discrete forms additionally use a local approximation at the 
Gauss integration points. Beside the functional minimisation and variational formulations given in 
equality forms (2.3)÷(2.4), inequality formulations may be also considered. Details are given in [75]. 
 

Also global / local formulations may be considered. The whole domain is divided then into a 
finite number of subdomains iΩ , usually assigned to each node iP . The global approach (2.3) or (2.4) 

is applied rather to those local subdomains than to the whole domain Ω  at once. In case of the 
variational principle (2.4), the weighting factor is ( ) 1v P = , if iP∈Ω , otherwise ( ) 0v P = . So that 

integral form is satisfied only locally, and is not treated as whole.  
 
In the recent years, in many applications of mechanics, more and more popular become 

Mehsless Local Petrov-Galerkin MLPG formulations [4, 5], derived from (2.1), (2.2) like (2.4). They 
use the old concept of the Petrov-Galerkin approach, in which the test function (v) may be different 
from the trial function (u) but is limited rather to subdomains than to the whole domain Ω  at once. 

 
In the Meshless Local PG approaches, the support of the test function v is chosen in order to 

simplify and reduce the numerical integration only to the subdomains with the simple, regular shape, 
e.g. circle or rectangle (Fig.2.4). The variational principle (2.4) is satisfied then only locally, in those 
subdomains. Classification of the MLPG formulations [4] is performed mainly due to simplicity of the 
integration of the weak form (2.4). Follwoing S.Atluri [4, 5], the Author of this concept, several 
different types of the MLPG may be distinguish, namely 

 

Ω

∂Ω iΩ
iΩ

 

Fig.2. 4: Concept of the Meshless Local Petrov Galerkin (MLPG) 
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(i) MLPG1: the test function (v) is the same as the weight w function in the MWLS 
approximation (refer to section 2.6: MWLS approximation and MFD schemes 
generation), 

 
(ii) MLPG2: the test function (v) is the same Dirac’s Delta function ( )x xδ −  as 

commonly used in the point collocation method, which results in the local 
formulation (2.1) with boundary conditions (2.2), 

 
(iii) MLPG3: the test function (v) is the same as the residual error function of the 

differential equation (2.1), using the MWLS approximation. As the result, one has 
to minimise the functional of the discrete residual error of (2.1), 

 
(iv) MLPG4: the test function (v) is the same as the modified fundamental solution of 

the differential equation (2.1), commonly used in the boundary methods .e.g. 
Boundary Element Method BEM, 

 
(v) MLPG5: the test function (v) is the same as the Heaviside step function 

0 ,
( )

1 ,

x x
H x x

x x

≤
− =  >

 (constant over each local subdomain iΩ ), such 

approach is equivalent to the Finite Volume Method, 
 

(vi) MLPG6: the test function (v) is the same as the trial function (2.4), which results in 
the Galerkin (symmetric) formulation. 

 
Several remarks may be made 

• Three of the above specified forms, namely MLPG2 (the collocation method), MLPG4 (the 
local boundary integrals method) and MLPG5 (with the constant test function) avoid 
numerical integration over the test function domain. However, integration over the trial 
function domain may be still required, 

• The MLPG2 results are very sensitive on the choice of the collocation points, 
• The MLPG4 involves singular integration on the boundary. 

 
Very promising seems to be the MLPG5 formulation, which involves only integration over the 

subdomains (prefectably regular), corresponding to trial function (u), usually assigned to particular 
nodes. In the present work, beside applying the MFDM solution approach to the classical forms 
(MLPG2 and MLPG6), some recent results are presented for the MLPG5 formulation as well. Here 
the test function may be supported by the local subdomains assigned to nodes (Voronoi polygons in 
2D) as well as the ones, defined among the group of nodes (Delaunay triangles in 2D). The original 
Atluri’s concept [4, 5] of the constant test function (of Heaviside type) is extended here for the 
constant and linear polynomial interpolation over these subdomains.  

 
The mixed, global - local approach may be also considered as a constrained optimisation problem. 

Minimisation of the functional (2.3), or a variational principle (2.4) is applied together with local 
equality (differential equations (2.1)) and/or inequality (differnetial inequalities) constraints and 
boundary conditions (2.2). 

  
2.6 The basic solution procedure of the Meshless FDM 
 
All drawbacks of the classical FDM 

- discretization of boundary conditions for curvelinear domain boundary, 
- requirement of mesh density increase (decrease), 
- mesh adaptation, 
- method automation  
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may be eliminated by using arbitrarily irregular meshes. However, mesh irregularity is the source of 
new difficulties. They are overcome when using the Meshless FDM. The basic MFDM solution 
approach [75] consists of several steps, which are listed below, and  will be briefly discussed in the 
following sections. 
 

• Formulation of  boundary value problems for MFDM analysis, 
• Nodes generation and modification 

o Nodes generation 
o Domain partition (Voronoi tessellation and Delaunay triangulation) 
o Domain topology determination 

• The optimal MFD star selection and classification 
• Local MWLS approximation  
• Mesh generation for the numerical integration (for global formulations only) 
• Generation of MFD operators 
• MFD discretization of boundary conditions 
• Generation and solution of MFD equations 
• Postprocessing by MWLS 
• Full MFDM automation, including symbolic operators 

 
As formulation of the boundary value problems were already discussed, a brief presentation of the 
above steps will be briefly considered in what follows. 
 
2.6.1 Nodes generation and mesh topology determination 
 
 The MFDM solution approach needs generation of clouds of nodes (arbitrarily distributed 
irregular points, forming later on an irregular mesh, that has basically no restrictions). Any mesh 
generator built for the FEM analysis could be used here. However, a nodes generator taking advantage 
from the features specific for the MFDM analysis may better serve this purpose [51, 54, 75, 85, 100]. 
Therefore, here nodes ( , ), 1,2,...,i ix y i N= =ix  are generated using the Liszka type mesh 

generator, based on the mesh density control. Though, totally irregular meshes may be generated in 
this way, use of zones with the regular mesh and smooth transition between them is practically 
convenient. Irregular mesh generator proposed by T.Liszka [54] takes full advantage of the domain 
shape. For the purpose of generation of well-conditioned MFD stars, it assumes regularity in 
subdomains with guaranteed smooth transition from dense to coarse mesh zones [85].  
 

1D mesh 2D mesh

min

log
r

r
p =

 

Fig.2. 5: Local mesh density for 1D and 2D case 
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The Liszka generator is based on the notion of the local mesh density iρ  (Fig.2.5), which may 

be defined as 
 

( )

( )

2
min

1

2

log                           in  1D

0.5            if  
            in  2D

inf ,         otherwise

0.5log 3  if  
     in  3D

inf , ,    otherwise

i
x

x x y

i

x y

x x y z

x y z

r
p p

r

p p p

p p

p p p p

p p p

ρ −


 = =



+ == 

 + = =





        (2.5) 

 
Here  ir   is a characteristic local modulus characterising mesh, and minr  is the modulus of the most 

dense regular square background mesh. From that mesh, the nodes are chosen according to a 

prescribed local mesh density 1 1 1( , ) inf ( , )x y x yρ ρ ρ− − −≡ ≡  , being an infimum of all local 
densities, given a’priori (Fig.2.6). Nodes are generated (“sieved”) out of the background mesh using 
criterion 
 

1 1ρ ρ− −≥               (2.6) 
 

1 pρ − ≥1 pρ − ≥

 

Fig.2. 6: Nodes generation in 1D case 

 
Mesh generator of Liszka type allows for generating arbitrarily irregular cloud of nodes. 

However, definition of the mesh density, in the original Liszka’s concept [54, 56], holds only for 
regular meshes. It was later extended by Orkisz [75] for irregular clouds of nodes, mainly for the 
adaptation purposes. It uses notions of the Voronoi polygons and Delaunay triangles, defined on any 
arbitrarily mesh, introduced below. 

 
When generated, the nodes are not bounded by any type of structure, like element or mesh 

regularity. However, it is convenient to determine afterwards the topology information of the already 
generated cloud of nodes. In 2D domain topology is determined by 

• Voronoi tessellation (domain partition into nodal subdomains), and list of Voronoi 
neighbours assigned to each node, 
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• Delaunay triangulation (domain partition into triangular elements), and list of triangles 
involving each node. 

 
Without restrictions imposed on the mesh structure, any node can be easily shifted or 

removed. Also a new node may be inserted with only small local modifications of the mesh topology.  
Voronoi tessellation and Delaunay triangulation of the cloud of generated nodes, followed by 

their topology determination, is very useful for further analysis of the boundary value problems (e.g. to 
MFD star selection, numerical integration, postprocessing). 

 
An 2D example of both Voronoi tessellation and Delaunay triangulation is presented in 

Fig.2.7. 
 

 

Fig.2. 6: Domain partitioning, Voronoi tessellation and Delaunay triangulation 

 
Voronoi partition allows for defining mesh density at any arbitrary point P of the irregular mesh [75]. 
Two situations may be distinguish 
 

• Point P is a node of an irregular mesh. Then mesh density of node P is the 2log   of square 

root of inverse of the Voronoi polygon area (in 2D, Fig.2.8) assigned to that node i ( iΩ ) 

 

2
min

1

2
1

2
min

1

3

2
min
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       (2.7) 
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iΩ

minΩ−

iΩ

minΩ−

 

Fig.2. 7: Mesh density for the 2D arbitrary irregular mesh 

 
Here k is a correction factor, depending on the node location (interior, boundary line, edge, vertex) 
and space dimension 
 

1                   for internal node
         in  1D

2                  for boundary node

1                      for internal node

2                     for boundary node

2 2
      for vertix nod

k

k

R

s

π π
α


= 


=

=

2

            in  2D

e

1                      for internal node

2                     for boundary node

2 2             in  3D      for edge node

4 4
    for vertix node

Rk
s

R

S

π π
α

π π
ω












= =



=


                 (2.7a) 

 
• Point P is an arbitrary point of the mesh. The mesh density at such point P is determined then 

by means of the approximation of the mesh densities iρ , already defined using (2.7), of the 

neighbouring nodes. Such approximation may be done by using the FEM or MWLS approach 
 

( , ) ( , )i i
i

x y x yρ ρ= Φ∑                       (2.8) 

 
where ( , )i x yΦ are relevant shape functions. 
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2.6.2 MFD star selection and classification 
 

A group of nodes used together as a base for a local MFD approximation is called the MFD 
star. Thus the MFD stars play similar role in the MFDM as the elements in the FEM, i.e. they are used 
for spanning a local approximation of the searched function. When dealing with irregular cloud of 
nodes, both MFD stars and formulas usually differ from node to node. However, configuration of stars 
may be common for some nodes. The most important feature of any selection criteria then is to avoid 
singular and ill conditioned MFD stars. Therefore, not only the distance from the central node counts, 
but also nodes distribution. That is why the oldest MFD stars generation criterion, based only on the 
distance between the nodes is not recommended. MFD star selection at any arbitrary node, and stars 
classification in a considered domain are based on topology information. Many criteria were 
formulated. Two the best of them, namely the “cross” and “Voronoi neighbours” criteria of star 
selection [75] are briefly discussed below. 

 

 

Fig.2. 8: Star selection by the “cross” criterion 

 

Fig.2. 9: Star selection by the "Voronoi neighbours" criterion 

 
In the 2D “cross” criterion, domain is divided into the four zones. Moreover each of four semi-

axes is assigned to one of these zones. A specified number of nodes (usually 2), closest to the central 
node (point) is taken from every zone separately, so that the number of nodes in the MFD star is 
constant and the method is easy to automation. However, result of this criterion may depend on 
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orientation of the co-ordinate system. What is more, the star reciprocity may not hold each time, 
namely if a node “i” belongs to the star of node “j”, the reverse situation does not always hold.  

In more complex “Voronoi neighbours” criterion, selected to the MFD star are those nodes 
which are the Voronoi neighbours. That means e.g. in 2D domain that those polygons have common 
side (strong neighbours) or common vertex (weak neighbours). As opposed to the first “cross” 
criterion, this one is objective and guarantees reciprocity: if a node “i” belongs to the star of node “j”, 
then the reverse situation also takes place. This criterion gives also the well known FD stars for regular 
rectangular and triangular meshes, whereas the “cross” criterion provides such results only for the 
rectangular meshes. On the other hand, the Voronoi neighbours criterion does not assure the same 
number of nodes in every star. Moreover, the number of nodes is variable and may be not sufficient in 
order to built full MFD operator of the specified order. The number of nodes (or rather the number of 
degrees of freedom) may be completed then by using several techniques in order to keep the chosen 
approximation order. Recommended is rather to introduce additional (generalised) degrees of freedom 
(e.g. values of the first derivatives) in existing nodes, than to provide additional nodes using only the 
distance criterion. For the boundary nodes, values of normal and/or tangent derivatives may be applied 
as the additional degrees of freedom. 

 
In Fig.2.9 and Fig.2.10 presented are the 2D examples of nodes classification using the “cross” 

criterion” (Fig.2.9) and “Voronoi neighbours” criterion (Fig.2.10)  for the second order differential 

operator (e.g. Laplace2∇ ). 
 
Classification of the MFD stars is also introduced, based on the notion of “equivalence class” of 

stars configurations [75]. For each class the FDM formulas are generated only once then. 
 

2.6.3 MWLS approximation and MFD schemes generation 
 
The Moving Weighted Least Squares approximation [40, 41, 42, 49, 50, 54, 75, 105], spanned 

over approximated local MFD stars, is widely used in the MFDM in order to generate MFD formulae 
as well as in the postprocessing. Consider any of the formulations of a given boundary value problem 
outlined before (2.1)÷(2.4). Let us assume a n-th order differential operator L . For each MFD star 
consisting of arbitrarily distributed nodes, the complete set of derivatives up to the assumed p-th 
( )p n≥  order is sought. When the MFD formulae are generated, point x  is represented either by a 

mesh node ( , ), 1,2,...,i ix y i N= =ix  (for the local formulation (2.1)) or by an integration point, 

when using a global formulation (2.3)÷(2.4). The MFD star at point ix  consists of  r star nodes 

1,2,...j r=  (Fig.2.11).  
 

ix

jx

( )i
( )j

∂Ω
Ω

 

Fig.2. 10: Arbitrarily distributed nodes, FD star 
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Local approximation ̂u  of the sought function ( )u x  may be written in two equivalent notations. The 
approximation, applied in the MWLS [33, 55, 56, 75, 80], is mainly based on the Taylor series 
expansion of the unknown function at the central point (i) of a MFD star (in 2D)  
 

( )ˆ( , ) ( , ) t Lu x y u x y e D e= + = ⋅ +p u                                               (2.9) 
 
where 
 

( )

( , )
0

1
( , ) , ,

! i i
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t L

i ix y
j

D h k u x y h x x k y y
j x y=

 ∂ ∂⋅ = + = − = − ∂ ∂ 
∑p u                        (2.10) 

 
Depending on  the space dimension we have   
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  ∂ ∂= =  ∂ ∂ 
  ∂ ∂ ∂
  ∂ ∂ ∂ 

tp u                                (2.11) 

 
where m denotes the number of unknown approximation coefficients (e.g. ( 1)( 2) / 2m p p= + +  for 

2D domain), p – the local approximation order,p – vector of the local interpolants (2.11), and  ( )LDu  
– vector of all derivatives up to the p-th (low) order. Index  (L)  is assigned to each quantity 
corresponding to the standard solution i.e. when using the low approximation order p. The local 
approximation ( , )u x x  ( x  -  temporarily fixed approximation location) in 1D is presented in Fig.2.12.  
 

x

f

x

1u

2u
3u

ju

( , )u x x( , )u x x

 

Fig.2. 11: local approximation in 1D 

It is worth stressing that the other meshless methods [4, 8, 52, 59] use the equivalent 
polynomial [8, 43, 49, 50] approximation (here given in the incremental form) 
 

0 1 2ˆ( , ) ( , ) ( ) ( ) ... ( )p t
i i m iu x y u x y b b x x b y y b y y≈ = + − + − + + − = ⋅p b                            (2.12) 

 
Here 
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However, the MFDM notation (2.9)÷(2.11) seems to be more practical, because it offers also 

information about approximation error   e  , caused by a truncated part of the Taylor series, as well as 
provides a simple interpretation of the approximation coefficients considered as function derivatives 
(local type).  

These  m  coefficients are found by minimisation of the approximation error. Here the error is 
understand as the difference between the function values iu  and their approximation ̂iu  taken at each 

node  i  of  the MFD star. Number of these nodes, or rather number  r  of degrees of freedom in the 

MFD star, should not be smaller ( )r m≥  than the number of coefficients to be determined. Usually, it 

is greater in order to avoid dealing with ill-conditioned simultaneous algebraic equations. One finds 
the required coefficients minimizing a weighted error functional then. In the particular case, when 
r m= , one deals wih interpolation and point interpolation method approach. 

Zero approximation error conditions imposed at all nodes of the MFD star, and r m>  
requirement lead to the over-determined set of algebraic equations 
 

( )ˆ( , ) , for    1,2,..., L
i i iu x y u i r D= = → =P u q                                                       (2.14) 

 
For 2D domain we have 
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P q                                                       (2.15) 

 
Here  ,i i i ih x x k y y= − = − , 

( )r m×
P  denotes the matrix of local interpolants (m r≤ ), and

( 1)r×
q  - 

vector of nodal values of a sought function ( , )u x y . Minimisation of the weighted error functional 
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and 
 
ˆ tu = p Mq                                                                        (2.18) 
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namely the complete set of the derivatives ( )LDu  up to the p-th order, expressed in terms of the MFD 
formulae matrix  M  providing the required MWLS approximation û .  Similar results may be obtain 
when using notation (2.12)÷(2.13).  
 

2( ) ( )TI = − −Pb q W Pb q                                                                                  (2.19) 
 

1 1ˆ0 , t t tI − −∂ = → = =
∂

b A Bq A = P WP, B = P W, u p A Bq
b

                                                (2.20) 

 
However, more convenient notation (2.17) is consequently used in the following sections. In the above 

formulas ( )1 2, ,..., r
r r

diag w w w=
( × )
W   is a diagonal weight matrix. For the weight functions 

 

2 2
1

1
, , 1,2,...,j j j jp

i

w k h j rρ
ρ += = + =                                                        (2.21) 

 
the matrix W may be singular [55, 56, 75, 80] or not. Singularity assures, in this way, the delta 
Kronecker property   ( )i j ijw x δ=  , and consequently enforces interpolation  ˆ( )i iu x u=   at the central 

node of each MFD star. Both singular and not singular concepts may be represented by the Karmowski 
weighting function [36] 
 

1
4

2 2 2 2
2 2

, , 1,2,...,

p

j j j j j
j

g
w k h j r

g
ρ ρ

ρ

− −
 

= + = + =  + 
                  (2.22) 

 
designed for smoothing the experimental and numerical data. As long as the smoothing parameter  g  is 
non-zero, the delta Kronecker property is not satisfied. 
 
MWLS extensions 
 
One may consider various extensions of the MWLS approximation including 
 
• generalised degrees of freedom, including e.g. derivatives, various operator values,... [43, 75], 
• singularities and discontinuities of the function and/or its derivatives [8, 43], 
• functions of complex variables, 
• equality and inequality constraints (global-local approximation [36]), 
• Higher Order approximation e.g. by means of the correction terms, such approach will be 

described in the following Chapters [64 ÷ 66, 75, 76, 83, 87 ÷ 96], 
• Generation of the multipoint formulas [15, 32, 81, 82, 83]. 
 
Generalised degrees of freedom 

 
MWLS approximation, which has been presented above, may be generalised by assuming larger 

set of nodal parameters [43, 75, 80]. There are several reasons for that like raising approximation 
quality or need for matching the exact boundary conditions. For illustration purpose, consider the 
situation presented in Fig.2.13, where beside the function values, given are values of the derivatives as 
well as value of the Laplace operator. 

 
By minimisation of the error functional  
 

2 2 ( ) ( ) 2 2
( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ( ) ( )s s
j i j i j j j i j j i sj

j i j i s

I u u w u u w= − + −∑ ∑∑ L L                   (2.23) 
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with the respect to values of the nodal derivatives Du   and use the modified weighting functions 
 

2 2
1

1
, , 1,2,...,sj j j jp s

i

w k h j rρ
ρ + −= = + =        (2.24) 

 
where s denoted the derivative order of the particular degree of freedom ( 0s =  for function value, 

1s =  for the first derivative, 2s =  for the second order operator, etc.), one gets the set of local MFD 
derivatives Du  depending on the generalised degrees of freedom. 
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Fig.2. 12: Star with generalised degrees of freedom 

 
 The MWLS approximation may be successfully applied also in the case, when the Higher 
Order multipoint formula is generated [15, 32, 81, 82, 83]. In the specific multipoint case [15], the 
MFD operator is based on the MFD star nodes values, as in the standard approach, and on the right 
hand side values of the differential equation (2.1). In the general multipoint case [15, 32, 81, 82, 83] 
sought are dependencies between the function values and their subsequent derivatives up to the 
required order. 
 

The MWLS approximation technique may be a very effective and powerful tool, useful for 
generating MFD formulas, as well as for numerical and experimental data smoothing. However, these 
results are quite sensitive to proper choice of some parameters involved in the MWLS approximation 
approach [80]. Among those parameters, one may distinguish 
 

• number and distribution of nodes in the MFD star, 
• the order of the local approximation  p, 
• the type of a weighting function w and its parameters; there are many other possibilities beside 

two examples of weights presented above (2.21)÷(2.22), 
• type of function derivatives, which may be calculated either locally (2.17), or differentiating 

the consistent, global approximation, built point-by-point upon the local one (2.9), 
• use of generalised degrees of freedom, shortly discussed above, 
• use of boundary conditions, imposed on the approximation. 

 
The other important features are space dimension and types of clouds of nodes (regular meshes, 

irregular grids – mapped from regular, arbitrarily irregular clouds). Improper choice of the above given 
factors may cause significant worsening of the obtained results. 
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2.6.4 Numerical integration in the MFDM 
 

Numerical integration plays an important role in the MFDM, and has significant influence on 
the final results [4, 8, 14, 40, 46, 75] applied to boundary value problems posed in the global 
formulation. The type and values of integration parameters depend on the purpose of integration.  
Three main situations may be distinguish 

• the boundary value problem is posed in the local formulation. The numerical integration is 
not required then, MFD equations are generated by node collocation technique, 

• the boundary value problem is posed in one of the global formulations. The numerical 
integration is required then, one has to additionally provide the mesh for integration, and 
choose the distribution and number of the Gauss points, 

• postprocessing of nodal results is sought and may require numerical integration then. It 
may involve evaluation of the integral forms, e.g. energy norm of the solution error 
evaluated over a chosen subdomain. 

 
There are four basic ways of numerical integration in the MFDM [75] 

a) Subdivision of the domain Ω  into subdomains , 1,2,...,i i nΩ =  assigned to each node, 

and integration over these subdomains (Fig.2.14a). This may be performed by means of the 
Voronoi tessellation and integration over Voronoi polygons (in 2D) iΩ  or Voronoi 

polyhedrons iV  (in 3D). In the simplest case, the values of nodal function iF  are multiplied by 

relevant surface areas iΩ  and added together, hence 

 

1

n

i i
i

I F
=

≈ ⋅Ω∑            (2.25) 

 
b) Subdivision of the domain Ω  into arbitrary background triangular elements (in 2D) or 

tetrahedrons (in 3D) with nodes located at their vertices, and integration over these triangles 
(Fig.2.14b). The Delaunay triangulation seems to be the best choice here. Integration is  
performed using the same quadratures as in the FEM, while values of the integrands at 
Gaussian points are found by means of the MWLS approximation,  

c) Subdivision of the domain Ω  into subdomains (triangles, squares, ...) in a way independent of 
nodes (background mesh), and integration over these subdomains (Fig.2.14c)  

d) Integration over the zones of influence determined by the weighting functions defined over a 
compact supports (usually regular ones like circles, ellypsis or rectangulars). 
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Fig.2. 13: 2D integration in MFDM, dependent of nodes 



 25 

The first way follows the traditional FDM approach (integration around the nodes, which is the 
most accurate one for the even order differential operators), while the second one follows the typical 
FEM approach (integration between the nodes, which is the most accurate one for the odd order 
differential operators). This is possible because the difference between the MFDM and the FEM 
concerns, first of all, the way and range of approximation, while the integration domain may be the 
same in both cases. The way (d) of integration is applied in many contemporary meshless methods [4, 
8]. 
 
2.6.5 Generation of the MFD equations 

 
The following strategy of generation of the MFD operators is adopted [75]. As opposed to the 

classic FDM approach where the FD operators are developed directly in the final form required, in the 

MFDM the operators are generated first for the complete set of derivatives ( )LDu  (zero-th, first, 
second,... up to p-th order) needed [33, 56, 75]. Each point, chosen for generation of derivativesDu , 
may represent either an arbitrary point (e.g. Gaussian) or a node in the considered domain. The local 
MWLS approximation, based on development of searched function into the Taylor series is spanned 
over an appropriate MFD star with a sufficient number of  r  nodes. Evaluation of the derivatives Du  
is based on the formulas (2.14)÷(2.17), (2.21). Having found the MFD operators for all derivatives, 
one may compose every one MFD operator required either for a MFD equation, boundary conditions 
or for an integrand (for the global MFD formulations). 

Consider e.g. a class of linear differential operators of the second order 
 

2 2 2

0 1 2 3 4 52 2

u u u u u
u c u c c c c c D

x y x x y y

∂ ∂ ∂ ∂ ∂= + + + + + ≈
∂ ∂ ∂ ∂ ∂ ∂

Tc uL                                          (2.26) 

 

where { }0 5,...,c c=c  are known coefficients. A required MFD operator is here a linear combination 

of derivativesDu  (see (2.11)). 
Generation of the MFD equations depends on the type of the boundary value problem 

formulation. In the local formulation (2.1) MFD equations are generated by collocation technique, 
which assumes satisfying the difference formulas (2.26) at all n internal nodes inside the domain 
 

,i i iu D f P≈ = ∈ΩTc uL                       (2.27) 

 
In the global formulations (2.2) ÷ (2.4) numerical integration is additionally required. It is followed 
then by the aggregation technique, like in the FEM.  
The MFDM equations are generated then 

(i) directly from the variational principle (Galerkin type approach) or 
(ii) by means of minimisation of the appropriate functional. 

 
Consider e.g. the global formulation given by the energy functional (2.2) in the particular form 

 

( ) ( )I u F u d
Ω

= Ω∫                                   (2.28) 

 
After numerical integration 
 

( )
1 2 ( )

1 1

( , ,..., ) ( )
G

i j

NM

N j i j P P
j i

I u u u J F uω
=

= =

≈∑ ∑                    (2.29)   
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where  M – number of integration cells, jJ  - transformation matrix, GN  - number of Gauss points, 

( )i jω  - integration weight, ( )i jP  - Gauss integration point. MFD equations are generated by the 

functional minimisation with the respect to the unknown nodal values 1 2, ,..., nu u u  

 

0 , 1,2,...,
i

I
i n

u

∂ = =
∂

                     (2.30) 

 
Variational formulation (2.3), after numerical integration and aggregation, produces at once the system 
of FD equations. 
 
2.6.6 MFD discretization of boundary conditions 
 

There are two main ways for imposing boundary conditions in the MFDM [14, 75] 
(i) at the level of generating the MFD formulas or, 
(ii) after generation of the MFD equations, at the level of algebraic equations. 

 
Moreover, it is worth distinguishing two cases  
- the boundary condition is imposed on an unknown function only 

 
( ) ,i i iu P g P= ∈∂Ω                      (2.31) 

 
- the differential operators are involved in the boundary conditions. Discretization is applied 

in the same way as for the operator L  inside the domain (2.22) then 
   

( ), ,b i b i i i iu D g u u P P≈ = = ∈∂ΩTc uL                              (2.32) 

 
 Quality of the MFD solutions usually essentially depends on the quality of discretization of the 
boundary conditions. Several approaches may be distinguish here (Fig.2.14) 
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Fig.2. 14: Discretization of the boundary conditions in the MFDM 

 
a) A MFD star for the boundary node in formula (2.32) may use only internal nodes (Fig.2.14a), 

approximation is of poor quality then.  
b) Use of so called fictitious nodes, located outside the domain (Fig.2.14b). This approach 

introduces additional unknowns to the system of algebraic equations. Using relevant boundary 
formulas, they may be expressed in terms of the internal nodes values based on the appropriate 
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boundary conditions. Thus one gets slightly better approximation, because the central node is 
closer to “centre of gravity” of the MFD star. This approach is not recommended in the 
hyperbolic problems (in dynamic mechanics), due to the fact, that greater number of nodes 
artificially increases the mass of the discretized system.  

c) Instead of introducing new nodes outside the domain, one may introduce additional, 
generalised degrees of freedom (Fig.2.14c), corresponding to given boundary conditions (like 

in the FEM), e.g.  '
i

i

u
u

n

∂=
∂

. 

d) Higher Order approximation, that may be provided by several mechanics including correction 
terms of the MFD operators, and general multipoint approach. 

 
The last approach mentioned above, namely the HO one using correction terms, as well as its 

combinations with various boundary techniques, will be discussed in details in Chapter 4. 
 
2.6.7 Solution of simultaneous FD equations (linear or non-linear) 
 
 In the MFDM analysis of locally formulated boundary value problems, one deals with 
Simultaneous Algebraic Equations (SAE). They may be also non-linear equations, when the original 
boundary value problem analysed is non-linear. 

In the case of linear boundary value problems, appropriate SLAE may be of non-symmetric (e.g 
for local b.v. formulation) or symmetric form (for global formulations, with proper discretization of the 
boundary conditions). In the last case they might be solved by means of similar procedures like those 
for the FEM discretization. Non-symmetric equations may use solvers developed e.g. for the CFD. 
However, the best approach seems to be development of solvers specific for the MFDM, taking 
advantage of this method nature. Especially, the multigrid adaptive solution approach seems to be 
effective [10, 29, 51,  75, 85, 93, 100] then. 

 
2.6.8 Postprocessing 
 

The MWLS approximation is a powerful tool for postprocessing because it may provide us with 
values of a considered function, and its derivatives at every required point [40, 41, 53, 56, 57, 75]. 
Approximation is based on discrete data (values of function or other d.o.f., like generalised degrees of 
freedom). These results may be directly obtained using the approximation approach defined in 
formulas (2.9)÷(2.10), (2.14)÷(2.17) and (2.21)÷(2.22) at each point of interest. It uses the same 
MWLS approach as applied to generation of the MFD operators discussed above. Though it may be 
precise, the MWLS approach is time consuming because solution of the local SLAE equations are 
needed at each point where approximation is required. The MWLS precision depends on the right 
choice of set of parameters involved, as outlined above. There are several techniques mentioned in the 
following Chapters (extensions) that may essentially raise the quality of the standard MWLS 
approximation [80]. 

 
2.7 General remarks 

 
The basic solution MFDM approach [56, 75], outlined above, has been extended in many ways so 

far, and is still under current development. Among many extensions of the basic MFD solution 
approach, developed in the past and still being under current development, one may mention here 

 
(i) MFDM oriented node generator [54, 56, 75, 100], 
(ii) A’posteriori error analysis [2, 12, 17, 18, 40, 43, 75, 89, 91, 92, 96], 
(iii) Mesh refinement and adaptive (multigrid) solution approach [17, 43, 51, 63, 75, 85, 91, 

93, 96, 100], 
(iv) MWLS with generalised degrees of freedom [43, 54, 75, 80, 83], 
(v) Higher Order approximation [32, 64 ÷ 66, 75, 76, 81, 83, 87 ÷ 96], 
(vi) MFDM on the differential manifold [45, 47, 48, 73, 107, 112, 113], 
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(vii) MFDM/FEM combinations and unification [45, 41, 43, 57], 
(viii) Experimental and numerical data smoothing [36, 86], 
(ix) Hybrid experimental / theoretical / numerical approach [36, 86], 
(x) Software development [43, 44, 45, 53, 54, 80, 100], 
(xi) Engineering applications [36, 43, 45, 86]. 

 
Many problems still need to be defined and solved, some of them are under current research nowadays. 
Among them one may distinguish 
 

(i) Solid mathematical bases of the MFDM, including such problems as solution existence, 
solution and residuum convergence, stability of the MFD schemes, etc. [16, 75], 

(ii) Various Petrov-Galerkin formulations and their discretization using MFDM [4, 5, 84, 98], 
(iii) Study on the influence of the numerous parameters on the quality of the MWLS 

approximation [80], 
(iv) Further development of the Higher Order approximation, based on 

a. Correction terms [64 ÷ 66, 75, 76, 83, 87 ÷ 96], 
b. Multipoint approach [15, 32, 81, 82, 83], 

(v) Improved, solution and residual error estimation, based on the new, higher order reference 
solution of high quality [90÷96], 

(vi) Analysis of the multigrid, full adaptive solution approach, based on the mesh generator, 
oriented on the 2D and 3D large non-linear boundary value problems [93], 

(vii) Acceleration of the SAE solution [97, 101], 
(viii) Comparison and coupling of the MFDM with the other meshless methods [118], 
(ix) Combination of the MFDM with other discrete methods, especially with the Boundary 

Element Method (BEM), FEM [43, 44, 45], and Artificial Intelligence (AI) methods [86], 
(x) Various engineering applications [45, 86]. 
 
The problems (iv) ÷ (vi) from the above list will be considered in the present work. The starting 

point is the Higher Order approximation, provided by the correction terms. That is the base of the 
whole research considered here. 
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3. Higher Order Approximation for the MFD operators 
 

3.1 On raising approximation quality in the MFDM 
 

The present state of the art indicates several possible approaches that may be used to improve 
MFD solutions. Increasing the number of nodes n in each star is the most obvious one, starting from a 
coarse to a fine mesh (Fig.3.1). This may be done by considering either more and more  denser regular 
meshes or arbitrarily irregular clouds of nodes. In the last case they may be generated using the 
a’posteriori error estimation (h-adaptive approach) [2, 12, 17, 18, 40, 43, 75, 89, 91, 92, 96], combined 
with the multgrid solution approach [10, 29, 51,  75, 85, 93, 100].  The number of nodes may be 
rapidly increased then, whereas the order of the approximation remains unchanged. 
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p

 
Fig.3. 1: Mesh refinement 

 
The other way to improve FD solution quality is to raise approximation order, leaving the number of 
nodes unchanged. This may be done by means of several different techniques: 
 

• Increasing number of nodes in MFD stars [109] with the same approximation order – the 
quality of approximation is slightly better due to better conditioning of the MFD operator. 
This is the simplest but most primitive way (Fig.3.2) 
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Fig.3.2:  MFD star with greater number of nodes 

 
• Use of Higher Order MFD operators [29, 109], with greater number of nodes and 

approximation order increased from p to p s+ , where s p≤  (Fig.3.3). Raising 
approximation order in that manner may cause ill-conditioning in MFD star as well as may 
provide additional unknowns into the discrete system. Moreover, if the number of nodes in the 
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MFD star raises, the approximation is getting worser, because it depends on more remote 
nodes. In the MFDM solution approach with HO MFD operators, the standard low order 
solution with approximation order  p, may be used as a starting solution for the iterative 
algorithm. This iteration process is in the most cases convergent to the result exact within 
approximation order assumed (p s+ ). 
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Fig.3.3: Higher Order MFD operator 

 
• Use of generalised degrees of freedom [35, 43, 75, 80] (Fig.3.4). Instead of inserting new 

nodes into the simple MFD operator, one may use additional degrees of freedom at nodes of 
MFD star, e.g. values of derivatives (first, second, ... order) as well as values of prescribed 
differential operators. It allows for raising of the approximation order from p to p s+ . It is 
often the case when a MFD star is not numerous enough, what may happen if the Voronoi 
neighbours criterion [75] is applied. 
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Fig.3.4: Generalised degrees of freedom 

 
• Use of the so called multipoint approach. In the standard case, introduced by Collatz [15] for 

the regular meshes only, known values of the right hand side function of the differential 
equation are introduced into the simple FD operator, as additional degrees of freedom beside 
the standard ones. This is the so called the specific approach. The approximation order may be 
raised then without introducing additional unknowns or inserting new nodes into the FD star. 
This interpolation scheme, typical for the classical FDM, holds only for the linear differential 
equations and boundary problems posed in the local formulation. The other multipoint 
approach, called general, requires that both the subsequent k-th derivatives and function nodal 
values are combined together. Using these additional relations, all needed MFD operators may 
be replaced by relevant combinations of the function values. Currently being developed are 
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both the general and specific cases of the multipoint approach [32, 81, 82, 83] extended for 
use of irregular meshes, and the MWLS approximation approach. This approach may be 
applied to any type of the boundary value problem, local or global, as well as holds for any, 
linear or non-linear, differential operator. 

 
• Use of the right hand side of the differential equation and its subsequent derivatives [64, 83, 

109] (Fig.3.5). For simple and linear differential operators, one may use values of the its right 
hand side and its derivatives evaluated in the central node of the MFD star for completing the 
approximation order (additional terms ( , ', '',...)f f f∆ ). This approach may be also used 
within the multipoint FD method. However, this approach is of historical meaning nowadays. 
It works well only for few types of boundary value problem posed in the local form, and is 
difficult to automation for the general case.  
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Fig.3.5: Use of the right hand side and its derivatives 

 
• Use of the Higher Order approximation HOA, provided by correction terms (Fig.3.6), based 

on Taylor series expansion, and higher order derivatives [64 ÷ 66, 75, 76, 83, 87 ÷ 96] 

( , ,...)III IVw w∆ . This approach will be presented here in details in the following sections. 
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Fig.3.6: Higher Order approximation, provided by correction terms 

 
Introductory numerical example 
 

In what follows, several simple numerical examples will be presented illustrating the above 
mentioned techniques. The simply supported beam under uniform load was discretized using the most 
rough mesh, with only one node of unknown value in the middle of the beam (Fig.3.7). 
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Local formulation of the boundary value problem is 
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The exact solution result for the node “2” is 
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introduced, values of which come from the FD discretization of the natural boundary conditions 
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Fig.3.7: Beam under uniform load 
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Several MFD schemes were applied 
 

• Standard (low order, 2p = ) FD operator, generated by using the Taylor series expansion 
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• Improved (low order, 2p = ) FD operator, generated using the MWLS approximation 
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which produces here even worse result than the previous FD operator, due to the low order 
discretization of the boundary conditions (3.2) and (3.3). 
 

• Higher Order ( 4p = ) FD operator, generated by using the Taylor series expansion 
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Despite of the fact that beam deflection is prescribed by the 4th order polynomial, the exact 
value has not been reached. Again the answer lies in the discretization of the boundary 
conditions (3.2) and (3.3), which has been performed using low order ( 2p = ) approximation. 
 

• HO generalised MFD operator ( 4p = ), taking into the account values of the second 
derivatives in the boundary nodes, generated by using the Taylor series expansion 
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Even though the exact result was obtained, the approach holds only for the local form of the 
boundary value problem as well as for the simple linear differential equations. 
 

• Standard Collatz multipoint formula ( 4p = ) for regular meshes and interpolating schemes, 
taking into the account the right hand side values of the differential equation (3.1) in the nodes 
of the FD star 
Expanding terms of the  FD operator into the Taylor series 
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as well as its values 
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we obtain the special case multipoint formula 
 

( )
1 3

40
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2 1 2 3 2 22

2 1 5
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12 24

w w
II Ew w w qL

w f f f w w
L EJ

= =− +≈ = + + → = =     (3.8a) 
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With the right hand side taken into account, this approach works only for simple, linear 
differential operators, and for the local form of b.v. problems. However, if interpreted as  
 

( )
2

1 2 3 1 2 32 10
12

II II IIL
w w w w w w− + = + +                    (3.8b) 

 
it presents the well known formula useful for general multipoint approach though using 
regular meshes only. 
 

• The Higher Order approximation ( 4p = ), using correction terms. 
Expanding terms of the FD operator into the Taylor series 
 

2 3 4
2 2 2 2 2

1 2 3
1 22 2

2 3 4
2 2 2 2 2

2
2 2 2 2 2 2 2

1 1 1
...

2 6 24
2 1
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1 1 1
...
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I II III IV

I II III IV

II IV

w Lw L w L w L w

w w w
Lw w

L L
w Lw L w L w L w

w L w f R f

 − + − + +
− += = − =

 + + + + +


= + + = − ∆ − ≈ − ∆

     (3.9) 

 
yields the form of the considered correction terms 2∆  (derivatives up to 4th order) and the 

neglected truncation error 2R . The higher order derivative is calculated using formula 

composition, like 
 

( )2 2
2 2 2 1 2 3

1 1 1
( 2 )

12 12 12

IIIV II II II IIL w L w w w w∆ = − = − = − − +                                          (3.10) 

 
and low order solutions 

2

1 3 2 2

1
0, 0,

2
II II II qL

w w w Lw
EJ

= = ≈ = −                   (3.11) 

The correction term 2
2

1

12
qL∆ = −   modifies the right hand side of the FD equation 

2 2 2Lw f= − ∆ , whereas the FD operator remains unchanged. Solving the set of FD equations 

once again yields the higher order solution  
 

4
2 2 2 ( )

2 2
1 3

5

0 24
H E

Lw f qL
w w

w w EJ

= − ∆
⇒ = = = =

                  (3.12) 

 
which is exact within the 4th polynomial order. In fact, it is the exact analytical solution as 
well, because the beam deflection is described by the polynomial of the 4th order ( 2 0R = ). 

Thus the exact solution is obtained using only one node with the unknown value. 
 

The above example, though very simple, reflects the main concept and advantages of the HO 
approach. The whole procedure needs two steps only, with the same basic FD operator, but with a 
modified right hand side. The HO FD solution suffers from the truncation error only, and does not 
depend on the quality of the FD operator used in the first step. The approach is general, it may be used 
for any type of linear or non-linear  boundary value problem. It will be presented in a general way in 
the following section. 
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3.2 Higher Order approximation provided by correction terms – general formulation 
 

Consider boundary value problem of the n-th order, given in the anyone of formulations 
(2.1)÷(2.4). The local MFD  p-th  ( p n≥ ) order discrete approximation iLu  of the differential 

operator value iuL  is assumed in the form 

 
,i i i i i i i iLu u R f R P= − ∆ − = − ∆ − ∈ΩL                                                                    (3.13)       

 
Here  L  is a MFD operator, corresponding to differential operator L , iR  is the truncated part of the 

Taylor series. The correction term 
 

( 1) (2 ) (0 ) (2 ) (0) (2 )( , ..., ; , ..., ; , ..., )p p p p
i i i i i i iu u J J S S+∆ = ∆                                                               (3.14)     

 
includes (higher order) derivatives of the s-th orders, where 2p s p< ≤ . They may also contain 

discontinuities  ( )kJ  and singularities ( )kS  of the function, and/or its k-th derivatives up to the 2p 
order. These may be either  known a’priori or could be treated as additional unknowns. Higher order 
derivatives may be calculated by the composition of appropriate formulae, and use of low order 
(without correction) MFD solution  inside the domain. However, they may need a special treatment 
near the domain boundary. This problem will be discussed in details in the following Chapter. 
 
In general, correction terms may be used for 

• improving the MFD approximation inside the domain, such case is discussed here (considered 
in Chapter 3), 

• improving the MFD approximation on the boundary (Chapter 4), 
• generation of  high quality reference solutions (Chapter 5), 
• estimation of the a’posteriori solution, and residual errors, in both the local and global forms 

(Chapter 5), 
• modification of the new nodes generation criteria in the adaptation process (Chapter 6), 
• improved HO multigrid approach (Chapter 7), 
• MFD discretization of the boundary value formulation of any type (considered here), 
• Data smoothing built into the MWLS approximation technique. 

 
Two step solution procedure is applied, when using HO approximation terms in the solution process. 
In the both steps the basic MFD operator does not change. At first the standard procedure is applied 

yielding solution ( )Lu  of low approximation order. In the second step the correction terms are 
evaluated in order to modify the right hand side of the MFD equations. The final HO MFD solution  

( )Hu  does not depend on the quality of the MFD operator. It depends only on the truncation error of 
the Taylor series used. 
Here, and in the following sections, the upper index ( )L  is referred to a quantity related to the low 
order approximation, ( )H  to the higher order one, and ( )T  - to the true solution. The MFD equations for 
the formulations (2.1)÷(2.4) including HO terms are: 
 
• local 
 

( ) ( )

,

i i i i iL H
i i

b j j b j j b i

Lu f Lu f
u u

L u g L u g

= = − ∆  → → → = = − ∆  
                                                 (3.15) 
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• global functional  I  minimisation 
 

( )( ) ( , ) ( , )
G GN N

L
i i i i i i i

i i

I u F u u F u Luω ω≈ ⋅ ≈ ⋅ + ∆∑ ∑J J
u
L                                                (3.16) 

{ } { }( ) ( ) ( )( , ) 0, ,
GN

L L H
i i i i i i

ij

F u Lu u u
u

ω∂ ⋅ + ∆ = →
∂ ∑J                                             (3.17) 

 
• global - variational principle (e.g. Galerkin type or equivalent) 
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i u i i v i i i i i
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Ω
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∫
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u v
L L

                                               (3.18) 

 

Here  ( )L
iu , and  ( )H

iu  denote MFD solutions based on the lower, p-th (no correction terms) and higher, 

2p-th order (including correction terms up to the order 2p for the MFD operators inside the domain -
( )L
i∆ , and on its boundary - ( )G

i∆ ) approximation respectively. Symbols J , gN , iω  denote quantities 

involved in the Gaussian integration procedure, J  (Jacobian) is the determinant of the transformation 
matrix, gN  - number of Gauss points, and , 1, ,...,i Gi Nω =  are integration weights. 

The idea of using higher order terms in the MWLS approximation is based on correction of the 
local approximation by providing higher order derivatives ( )HDu  up to the order p s+ . Usually we 
have s p= , derivatives are calculated in the most accurate manner then. We have 
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and  m’ – number of additional terms (
3 ( 1)

'
2

p p
m

+=  for 2D domain). By assuming conditions 

(2.11) one gets system of equations 
 

( ) ( ) ( )L H HD D⋅ + ⋅ =P u P u u                                                                                                           (3.21) 
 
where 
 

1 2
1 1

1 2
2 2( )

[ ']

1 2

1 1
...

( 1)! 2 !

1 1
...

( 1)! 2 !

... ... ...

1 1
...

( 1)! 2 !

p p

p p

H

r m

p p
r r

h k
p p

h k
p p

h k
p p

+

+

×

+

 
 +
 
 
 +=
 
 
 
 
 +  

P                                                                     (3.22) 



 38 

Substituting (2.14) into (3.21) yields the improved values of the low order derivatives  
 

( ) ( ) ( )

( )

L H H

m r
D D

×
= ⋅ − → = ⋅ ⋅u M u ∆ ∆ M P u                                           (3.23) 

 
where ∆  is the vector of correction terms. Derivatives of the higher order than p may be calculated 
inside the domain using formulae composition, e.g.  
 

( ) ( ) ( )' '' or '' ' , '' ''III III IVu u u u u u= = =                                                           (3.24) 

 
Iteration procedure may be also performed in order to calculate the final corrected value of  the low 
order derivatives (2.14) 
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M u ∆∆∆∆
                                                                  (3.25) 

 
where correction terms ( 1)k− ∆∆∆∆  are built in an iterative way on more and more accurate values of 

derivatives ( ) ( )k LDu . This iteration procedure is convergent to the solution exact for p + s polynomial 
order. In Eq. (3.25), only the right hand side is modified after each iteration step. Therefore, in case of 
elimination methods, LU decomposition has to be performed only once, and then it is applied 
consequently in the step forward and step back procedures.  The speed of the iteration algorithm (3.25) 
depends on the type of boundary value problem, and on manner of discretization of boundary 
conditions. In the practical calculations, the iterations procedure (3.25) is required, if no additional HO 
techniques are applied on the boundary. They will be dicussed in the following Chapter. 
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Tab 3. 1: Review of the benchmark tests 

 
The proposed HO MWLS approach may be applied to generation of the MFD formulae, and solution 
of Eqns (3.15)÷(3.18) with the HO terms included, as well as to postprocessing, mainly in a’posteriori 
residual error estimation. 
 
3.3 Simple numerical examples 
 
A variety of  1D and 2D boundary value problems were solved in order to examine the quality of the 
Higher Order solution. Some of them are presented in this section. 
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3.3.1 1D test problems 
 
Beam deflection 
 
The first group of tests is devoted to simple preliminary examples taken from the beam deflection. 
Their main tasks were as follows 

• Examination of the quality of the Higher Order solution of a 1D linear boundary value 
problem, 

• Testing of the HO solution improvement, when compared with the standard approach, 
• Testing the ability of the approach to deal with the solutions exhibiting various order of 

smoothness (jumps, concentrated loads, hinges, etc.). 
 

The Table below collects some of the benchmark examples. 
 

Analysed were deflections of the simply supported, and cantilever beams under the uniform 
loading and concentrated force. Solutions exhibit various order of smoothness, due to jump terms. 
These terms may be interpreted as values of concentrated forces, moments or abrupt changes of the 
uniform load (all of them are known a’priori, tasks no. 3,4,6,7), as well as unknown reaction forces, 
and deflection angle (additional unknowns, tasks no. 6,7,8). Shown are the low order results and the 
higher order ones, as well as their true errors, referred to the true analytical results. Providing 
correction terms yield true analytical results except for the last example, which presents the beam 
buckling. The true solution is not of the polynomial nature then and it will be analysed separately in a 
more detailed way. 
 
Beam buckling 
 
This benchmark was chosen mainly for 

• Examination of the quality of the HO solution, in the case when the analytical solution is 
described by a non-polynomial function (here trigonometrical), 

• Comparison of the true analytical errors of both the low order and HO solutions, 
• Examination of the convergence rates and solution convergence improvement on the set of 

regular meshes. 
 

P = PE

L 1 ?w =

0 1 x

w

f

1fw w= 0 0w =
( )w x

L

 

Fig.3.8: Cantilever beam subjected to buckling load P 

 
Formulation of the boundary value problem 
 

( )''( ) ( ) , 0

(0) 0 , '(0) 0

w x P w l w x l

w w

= − − ≤ ≤
= =

    
                   (3.26)
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The classic Euler problem was also solved using either the low order or higher order approximation in 
order to examine the quality of those solutions, as compared to the exact value of the Euler force  
 

2

2 2

1
2.467

4E

EJ EJ
P

L L

π= ≈           (3.27) 

 
Considered was the coarse regular mesh with 2 nodes only (spaced with h L= ). Discretization of the 
natural condition '(0) 0w =   was performed using a fictitious node  f  and evaluation 
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2
f
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w w
w w w
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−
≈ = ⇒ =              (3.28) 

 
Classical FD operator for the second derivative 
 

1 1
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2
'' i i i
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w w w
w

h
− +− +≈            (3.29) 

was used for the internal nodes. For the mesh shown in Fig.3.8 (one nodal unknown 1 ?w = ), the 

following FD solutions (values of buckling forces) are obtained together, with the appropriate exact 
relative error 
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• Low order solution (mesh with 2 nodes, Fig.3.8) 
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• Higher order solution (mesh with 2 nodes, Fig.3.8) 
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Fig.3.9: Convergence of FD solutions 

 
Precision of the higher order solution is over 6 times better than the lower order one. Calculations for 
the set of ten regular meshes more and more dense were performed, showing that the quality of the low 
order solution on the last mesh (with 11 nodes) is similar to the higher order one on the second mesh 
with 3 nodes only (Fig.3.9). Furthermore, the convergence rates, evaluated in the logarithmic scale 
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1.94LOa = , and 4.03HOa =  yield solution convergence improvement  2.08HO

LO

a

a
= , which means that 

the HO error  HOε   decreases over 102 = 100 times faster, when compared with the low order one  

LOε . The dashed line in Fig.3.9 represents the true LO solution error level for mesh with 13 nodes. In 

this simple case, the same true HO error level may be achieved for the mesh with 3 nodes only. 
 

1D linear differential equation (general case) 
 
The local form of 1D boundary value problem was considered 
 

''( ) '( ) ( ), (0,4)

(0) (4) 0, 1

w x a w x f x x

w w a

+ = ∈
= = =

                          (3.31) 

 
Right hand side function  ( )f x  corresponds to the three different exact analytical solutions (Fig.3.10) 
 
1. 1D benchmark no. 1 – the 4th order polynomial function  
 

[ ] ( )4 2 2 3( ) 16 , 0,4 ( ) 12 32 4 32w x x x x f x x a x x= − ∈ → = − + −    (3.32) 

 
2. 1D benchmark no. 2 – trigonometric function  
 

[ ]
2

( ) sin , 0,4 ( ) sin cos
4 16 4 4 4

x x x
w x x f x a

π π π π π     = ∈ → = − +     
     

               (3.33) 

 
3. 1D benchmark no. 3 – trigonometric function with 10th order polynomial 10( )p x  added in the 

first interval 0 2x< <  
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    − + + + < <   
    → = 
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               (3.34) 

 
Equivalent global formulations ( admv V∈ ) were considered 

(i) variational Galerkin type 

• [ ]
4

0

'' ' 0w aw f v dx+ − ⋅ ⋅ =∫  - first non-symmetric form             (3.35)         

• [ ] [ ]
4

4

0
0

' ' ' ' 0v w v aw f v dx w v− ⋅ + ⋅ − =∫  - symmetric form                 (3.36) 

• [ ] [ ] [ ]
4

4 4

0 0
0

'' ' ' ' 0v w v aw f v dx w v wv+ ⋅ − ⋅ + − =∫  - second non-symmetric form        (3.37) 
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(ii) minimum of the functional, which exists only when 0a =  

 
4

2

( )
0

1
min ( ')

2w
w f w dx

 + ⋅  
∫                                             (3.38) 

 
(iii) other global forms, e.g. the MLPG formulations [3, 4]. 

 
In all global form (3.35)÷(3.38), both the trail and test functions satisfy boundary conditions 

(0) (4) (0) (4) 0w w v v= = = = , which effects in vanishing of the boundary terms in the integral 

forms, namely [ ]4

0
' 0w v =  and [ ]4

0
' 0wv = . 

 
The main tasks of those 1D benchmark problems were as follows 
(i) further examination of the quality of the HO solution. Comparisons were made between the 

low order solution  ( )Lw , and the HO one ( )Hw , both referred to the true analytical result ( )Tw . 
The 1D benchmark no.1 was chosen in order to test the ability of the approach to recover the 
polynomial of the same order as the one assumed, using the correction terms. The second, and 
the third benchmark problem exhibit non-polynomial exact solution. They were chosen in 
order to test the quality of the MFD solutions, when analysing problems with significantly 
varying both the solution and the right hand side of the equation, 

(ii) comparison between results obtained on regular and irregular meshes, 
(iii) examination of the quality of derivatives evaluated by using the HO terms, and comparison 

with the standard MFD approximation, 
(iv) comparison between different formulations of the boundary value problems (local and 

variational), in which the correction terms may be applied as well, 
(v) study on the convergence rates of MFD solutions using set of regular meshes. 
 

 

Fig.3.10: Revision of the 1D benchmark tests 
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In the present Chapter, all exact solutions of the test problems are known and, therefore only the true 
analytical solution error is evaluated. Application of the approach using higher order terms, to the local 
solution error and residual error estimation will be discussed in details in the Chapter 5.  
Results for three of the above formulations, namely (3.31) and (3.35)÷(3.38) will be presented: the 
local form (3.31), first variational non-symmetric (3.35) and symmetric Galerkin (3.36). The second 
non-symmetric (3.37) and functional form (3.38) were omitted due to similarity in results of first non-
symmetric and symmetric Galerkin, respectively. Below given are numerical algorithms for the low 
order and higher order approximation approach. The following detonations are introduced 
k – integration interval no. 
l – Gauss point no. 
i – node number in the MFD star for the test function  v 
j - node number in the MFD star for the trial function w 
n – number of nodes 
( 1)n−  - number of  integration intervals 

kJ  - Jacobian of the transformation matrix from [ ]1,1−  to [ ]1,k kx x +  

gN  - number of the Gauss points in the integration interval 

lx  - Gauss integration point 

lω  - integration weight, assigned to the point lx  

vm   - number of nodes in the MFD star for the test function  v 

wm   - number of nodes in the MFD star for the trial function w 
( ) ( )

,
( 1 )

, 1,..., 1
v v

v v
N i v

p m
M m N p

+ ×
 = = +   - MFD formulas for the test function  v 

( ) ( )
,

( 1 )
, 1,..., 1

w w

w w
N j w

p m
M m N p

+ ×
 = = +   - MFD formulas for the trial function w 

vp  – order of the local approximation of the test function  v 

wp  – order of the local approximation of the trial function w 

 
1. Algorithm for the local form (3.31) 

(i) Starting forms of the coefficient matrix  A and the right hand side vector b of the SLAE 
 

(0) (0)
, 0, 0, , 1,2,...,i j iA B i j n= = =                    (3.39) 

 
(ii) Discretization of the differential equation 

 

{ } { }( ) ( ) ( ) ( )
3, ( ) 3, 2, ( ) 2,

1 1

( ) , 1,2,...,
w wm m

w w w w
j j l l j j l l l

j j

m w a m w f x l n
= =

− ∆ + − ∆ = =∑ ∑               (3.40) 

 
(iii) SLAE  coefficients 

 

{ } { }
( ) ( )

, 3, 2,

( ) ( )
3, 2,

, 1,..., ; 1,...,

( )

w w
l j j j w

w w
l l l l

A m am j m l n

B f x a

 = + = =


= + ∆ + ∆

                 (3.41) 

 
(iv) Final form of SLAE 

 

{ }

( )
,

( )
,

..., , 1,2,...,

..., , 1,2,...,

L
i j j i i

H
i j j i i i

A w B w i j n

A w B w i j n

⋅ = → = =

⋅ = + ∆ → = =
                 (3.42) 

 
2. Algorithm for the first non-symmetric form (3.35) 
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(i) Starting forms of the coefficient matrix  A and right hand side vector b of SLAE 
 

(0) (0)
, 0, 0, , 1,2,...,i j iA B i j n= = =                    (3.43) 

 
(ii) Discretization of the variational principle 

 

{ } { }
1

( ) ( ) ( ) ( ) ( )
1, ( ) 3, ( ) 3, 2, ( ) 2,

1 1 1 1 1

1
( )
1, ( )

1 1 1

( )

g v w w

g v

N m m mn
v w w w w

k l i i l j j l l j j l l
k l i j j

N mn
v

k l l i i l
k l i

m v m w a m w

f x m v

ω

ω

−

= = = = =

−

= = =

  
 − ∆ + − ∆ = 
    

= ⋅

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

J

J

               (3.44) 

 
(iii) SLAE  coefficients 

 

( )
{ } { }( )

( ) ( ) ( )
, 1, 3, 2,

( ) ( ) ( )
3, 2, 1,

, 1,..., ; 1,..., ;

( ) , 1,..., ; 1,..., 1

v w w
i j k l i j j v w

w w v
i k l l l l i g

A m m am i m j m

B f x a m l N k n

ω

ω

 + = + = =



+ = + ∆ + ∆ = = −

J

J
              (3.45)  

 
(iv) Final form of the SLAE 

 

{ }

( )
,

( )
,

..., , 1,2,...,

..., , 1,2,...,

L
i j j i i

H
i j j i i i

A w B w i j n

A w B w i j n

⋅ = → = =

⋅ = + ∆ → = =
                 (3.46) 

 
3. Algorithm for the symmetric Galerkin form  (3.36) 

(i)  Starting forms of the coefficient matrix  A and right hand side vector B of the SLAE 
 

(0) (0)
, 0, 0, , 1,2,...,i j iA B i j n= = =                                                                                (3.47) 

 
(ii) Discretization of the variational principle 

 

( ) { }
1 1

( ) ( ) ( ) ( )
2, ( ) 2, ( ) 2, 1, ( )

1 1 1 1 1 1 1

1 ( )
g gv w v

N Nm m mn n
v w w v

k l i i l j j l l k l l i i l
k l i j k l i

m v a m w f x m vω ω
− −

= = = = = = =

 
− − ∆ = ⋅ 

 
 

∑ ∑ ∑ ∑ ∑ ∑ ∑J J        (3.48) 

 
(iii) SLAE  coefficients 

( )
{ }( )( )

( ) ( )
, 2, 2,

( ) ( )
2, 1,

1 , 1,..., ; 1,..., ; 1,..., ;

( ) 1 , 1,..., 1

v w
i j k l i j v w g

w v
i k l l l i

A m a m i m j m l N

B f x a m k n

ω

ω

 + = − = = =


+ = − ∆ − = −

J

J
              (3.49) 

 
(iv) Final form of the SLAE 

 

{ }

( )
,

( )
,

..., , 1,2,...,

..., , 1,2,...,

L
i j j i i

H
i j j i i i

A w B w i j n

A w B w i j n

⋅ = → = =

⋅ = + ∆ → = =
                 (3.50) 

 
In the above algorithms the following assumptions have been made 

(i) The test function  v  at the Gauss points is approximated using its nodal values ( 2vp = , 

3vm = ), 
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(ii) The trial function  w  at any arbitrary point (node, Gauss point) is approximated using the 
MWLS technique and the MFD stars which consist of  5 7wm = ÷  nodes. The basic 

approximation order is 2wp = ,  after the correction it is raised to 2 4wp⋅ = , 

(iii) The correction terms ( )w
l∆  correspond to the MFD formula for the trial function w. They 

are added to the right hand side of the SLAE in the second stage of calculations, 
(iv) In the simplest case, the final SLAE is solved twice, first time for the low order solution  

( )L
iw . Then, it is solved once again, after evaluation of correction terms ( )w

l∆ . The SLAE 
has the same coefficient matrix A, modified is only the right hand side vector B. Solution 

of this SLAE  yields the Higher Order solution ( )H
iw . In some cases, additional iterations 

may be performed, 
(v) In the case of the global formulations, numerical integration is applied. The integration is 

performed here between the nodes, like in the FEM, where integration cells correspond to 
the node intervals. Schemes with 3gN =  Gauss points are applied, 

(vi) Boundary conditions for the test function v , (0) (4) 0v v= =  were imposed on the level 
of generation of the MFD equations, like in the classical FDM, whereas the boundary 
conditions for the trail function (0) (4) 0w w= =  were imposed on the level of the SLAE, 
like in the FEM. 

 
The whole solution algorithm, for both the local and global forms, is presented below, in the form of 
the flow chart (Fig.3.11). It also holds for 2D and 3D boundary value problems. 
 

- Formulation (local, global, …)
- Introduction of cloud of nodes (n)

- Generation mesh topology

- MFD star classification and generation
(at the nodes)

- MFD formulas generation (MWLS)

LOCAL FORMULATION GLOBAL FORMULATION

- collocation technique for 
the MFD equations generation

- MFD star generation at the Gauss point
- aggregation and MFD equations generation

- imposition of the boundary conditions
- solving of the SLAE

- low order derivatives calculations
- higher order derivatives composition

- correction terms composition

higher order 
solution

stabilized?

NO

YES

- final postprocessing of the results

 

Fig.3.11: Flow chart for the HO approximation algorithms 

 
The results are presented separately for the benchmarks 1-3.  The quality of the MFD solutions and 
their first derivatives, was examined by the exact solution errors, calculated at the nodes 
 

(i) ( ) ( ) ( ) , 1,2,...,LT L T
i i ie w w i n= − =  - the LO true solution error,              (3.51) 
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(ii) ( ) ( ) ( ) , 1,2,...,HT H T
i i ie w w i n= − =  - the HO true solution error.                        (3.52) 

 
Distribution of (3.51) and (3.52) are presented in Figures. Their values, though evaluated in the nodes, 
were extended on the whole domain using linear spline interpolation. Additionally in the Tables 
presented are the mean and maximum values of the true errors, calculated as follows 
 

(iii) 
2 2( ) ( ) ( ) ( )

1 1

1 1
, ,

n n
kT kT k T

mean i i i
i i

e e w w k L H
n n= =

 = = − = ∑ ∑ ,                           (3.53) 

(iv) ( ) ( ) ( ) ( )
max max max , 1,2,..., , ,kT kT k T

i i i
i i

e e w w i n k L H = = − = =  ,.             (3.54) 

 
1. Benchmark no.1 – regular mesh with 5 nodes 
 

• In the left column, the exact errors (3.51) of the MFD solutions (low order – dash-dot line, and 
higher order – solid line) are presented while in the right column, the exact errors of the first 
derivatives of the MFD solutions are shown. Each time the exact result was obtained, after 
doing the HO correction (Fig.3.12). 

• In the first row, results for the local form (3.31) are presented; in the second, results of the first 
variational non-symmetric form (3.35) and in the last third one, for the variational symmetric 
(3.36). The smallest LO true error was obtained for the local and variational symmetric form. 

 
Remark: all graph scales were adjusted to the maximum error (of the solution or 1st derivative) value 
among the formulations, for better comparison.  
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Fig.3.12: Results for the benchmark no.1, mesh with 5 nodes – three formulations 

 
The above tests showed that MFD solution yields result exact within 4th polynomial order assumed. 
Here, it is the true analytical result as well. 
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solution error first derivative error 
( )LTe  ( )HTe  ( )LTe  ( )HTe  

boundary value 
problem formulation 

max mean mean max max mean mean max 
Local 0.084 0.081 0 0 0.133 0.086 0 0 

First variational 
non-symmetric 

0.832 0.761 0 0 0.468 0.368 0 0 

Variational symmetric 
(Galerkin) 

0.044 0.045 0 0 0.125 0.112 0 0 

Tab 3. 2: Results for the benchmark no.1, mesh with 5 nodes – three formulations 

 
2. Benchmark no.2 – regular mesh with 33 nodes 
 

Denser mesh, with 33 nodes, was used for benchmark no.2 and no.3 For better comparison 
between the formulations, the results were divided into two groups. The first one is referred to the 
local and variational non-symmetric formulations (Fig.3.13), and the second to the local and 
variational symmetric ones (Fig.3.14). The graphs are plotted in the same scale, separately for the 
solution error, and for the first derivative error.  
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Fig.3.13: Results for benchmark no.2, mesh with 33 nodes – local and variational first non-
symmetric formulations 

 
Definitely, the local form yields better results, for the function and its derivative, when compared to 
the non-symmetric one. In analysed formulations the same, second order of the derivative appears, 
however, the variational non-symmetric suffers from the integration error additionally. Each time error 
of the HO solution is 10-1000 times smaller, when compared to the error of the LO solution. 
 
Observed is much results improvement, while dealing with the variational symmetric (3.36) form, 
however this remark concerns only the MFD solutions (Fig.3.14). This is due to the lower, the first 
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order derivatives under the integrals. The error of derivative is much smaller for the local form, which 
can be explained by using more accurate nodal MFD schemes in that case. 
 

solution error first derivative error 

low order ( )LTe  Higher Order ( )HTe  low order ( )LTe  Higher Order ( )HTe  
boundary 

value problem 
formulation mean max mean max mean max mean max 

Local 1.18e-3 1.20e-3 6.99e-7 7.93e-7 6.71e-4 9.54e-4 1.22e-5 3.53e-5 
First 

variational 
non-

symmetric 

1.04e-2 1.04e-2 1.68e-5 1.76e-5 2.14e-2 3.13e-2 6.10e-5 1.75e-4 

Variational 
symmetric 
(Galerkin) 

3.65e-5 3.85e-5 4.96e-8 1.09e-7 1.77e-3 1.98e-3 5.52e-6 1.62e-5 

Tab 3. 3: Results for benchmark no.2, mesh with 33 nodes – three formulations 

 
The whole results, for all three formulations, are compared in the same scales in Fig.3.15. 
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Fig.3.14: Results for benchmark no.2, mesh with 33 nodes – local and variational symmetric 
formulations 

 
The convergence test was performed, on 100 more and more dense meshes, starting from the rough 
mesh with 5 nodes only. Results for the mean true solution error in the logarithmic scale are presented 
in Fig.3.16. The LO and HO solution convergence is shown for all three formulations. Convergence 

rates La  and Ha    were calculated, corresponding to the LO and HO solution respectively, using 
linear approximation (in logarithmic scale) of the results from every mesh. Beside convergence rates, 

the solution improvement 
H

L

a

a
 was calculated and shown in the brackets near the graph legend. 
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Fig.3.15: Results for benchmark no.2, mesh with 33 nodes – three formulations 
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Fig.3.16: Convergence of the MFD solutions on the set of regular meshes – benchmark no.2 

 
The lowest values of errors may be observed for the variational symmetric form, in which the first 
order derivative appears. The largest amounts of errors arise for the variational non-symmetric form, 
when the second order MFD operators are built in the least accurate manner, between the nodes at the 
Gauss points. However, for this formulation, the largest solution improvement (3.08) is observed, after 
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HO correction. For the local formulation, the solution improvement is even largest here (≈2.6) and 

exceeds the theoretical value (
2

2
p

p
= ).  

 
3. Benchmark no.3 – mesh with 33 nodes 
 

The solution errors, and derivatives errors are strongly influenced by the large amount of 
gradients of the exact solution in the first half of the domain interval. Comparison is made between the 
local and the first variational non-symmetric forms (Fig.3.17), as well as between the local and 
variational symmetric formulations (Fig.3.18). Each time the HO solution error is smaller 10 – 100 
times than the LO solution error. Among the formulations, similar observations might be made as for 
the previous benchmark. 
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Fig.3.17: Results for benchmark no.3, mesh with 33 nodes – local and variational non-symmetric 
formulations 

 
solution error first derivative error 

low order ( )LTe  Higher Order ( )HTe  low order ( )LTe  Higher Order ( )HTe  
boundary 

value problem 
formulation mean max mean max mean max mean max 

Local 8.22e-3 1.35e-2 1.42e-3 1.86e-3 2.50e-2 4.38e-2 1.82e-2 4.19e-2 
First 

variational 
non-

symmetric 

6.14e-2 8.44e-2 3.35e-3 4.76e-3 2.03e-1 2.20e-1 1.72e-2 2.31e-2 

Variational 
symmetric 
(Galerkin) 

1.43e-3 1.93e-3 1.13e-4 2.01e-4 4.94e-2 4.84e-2 9.49e-3 1.95e-2 

Tab 3. 4: Results for benchmark no.3, mesh with 33 nodes – three formulations 
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Fig.3.18: Results for benchmark no.3, mesh with 33 nodes – local and variational symmetric 
formulations 
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Fig.3.19: Results for benchmark no.3, mesh with 33 nodes – three formulations 
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Fig.3.19 collects results for all three formulations. It can easily observed, that non-symmetric 
variational form produces the worst results, while the symmetric variational is slightly better from the 
local one on the level of the MFD solutions only. 
 
Similar convergence test, as for the benchmark no.2, was done. Results, together with the convergence 
rates and solution improvements, are presented in Fig.3.20. 
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Fig.3.20: Convergence of the MFD solutions of (3.31) on the set of regular meshes – benchmark 
no.3 

 
3.3.2 2D test problems 
 
2D linear differential equation 
 
The boundary value problem described by the Poisson equation with the essential boundary conditions  
 

2 ( , )w f x y in

w w on

∇ = Ω
 = ∂Ω

                                                          (3.55) 

{( , ), 0 1, 0 1}x y x yΩ = ≤ ≤ ≤ ≤  
 
was analysed. Two different benchmark problems were considered with the exact solutions known 
 
1. 2D benchmark no.1 
 

( , ) sin( ) , 0 1, 0 1 ( , ) 2sin( )w x y x y x y f x y x y= + ≤ ≤ ≤ ≤ → = − +     (3.56) 
 
2. 2D benchmark no.2 
 

2 2
3 3 0.5 0.5

( , ) exp , 0 1, 0 1
0.2 0.2

( , ) 6 6 exp( , )

x y
w x y x y x y

f x y x y x y

 − −   = − − + − − ≤ ≤ ≤ ≤ →         

→ = − − +

   (3.57) 
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was taken from the paper [34].   
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Fig.3.21: Exact results for the 2D benchmark no.1                                    

 
The right hand side functions  ( , )f x y  result from the true analytical solutions (3.56)÷(3.57) and are 
presented in Fig.3.21 (for the 2D benchmark no.1) and Fig.3.22 (for the 2D benchmark no.2). 
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Fig.3.22: Exact results for the 2D benchmark no.2 

 
The main tasks of those 2D benchmark problems were as follows 

(i) further examination of the quality of the HO solution. As in the previous examples, 

comparisons were made between the low order solution  ( )Lw  and the HO one ( )Hw , 

using here only the exact solution error terms, referred to the true analytical result ( )Tw . 
Error estimation will be discussed in the Chapter 5, 

(ii) examination of the quality of the chosen derivatives evaluated using HO terms and 
comparison with the standard MFD approximation, 

(iii) comparison between different formulations of the boundary value problems, in which 
the correction terms may be applied, 

(iv) comparison between results obtained using regular and irregular meshes, 
(v) study on the convergence rates of the MFD solution on the set of regular meshes. 

 
Three variational formulations may be derived from the local formulation (3.56) 
 
(i) First non-symmetric Galerkin form 
 

Find such trial function 2w C∈ , that for the arbitrary test function  0v C∈  the following variational 
equation is satisfied: 
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( )'' ''x yw w vd f v d
Ω Ω

+ Ω = ⋅ ⋅ Ω∫ ∫     ,    {( , ), 0 1, 0 1}x y x yΩ = ≤ ≤ ≤ ≤                (3.58) 

 
 
(ii) Symmetric Galerkin form 
 

Find such trial function 1w C∈ , that for an arbitrary test function  1v C∈  the following variational 
equation is satisfied: 
 

( ) ( )' ' ' ' ' 'x x y y x x y yw v w v d v n w n w d f v d
Ω ∂Ω Ω

− + Ω + ⋅ ⋅ + ⋅ ∂Ω = ⋅ ⋅ Ω∫ ∫ ∫                              (3.59)                            

{( , ), 0 1, 0 1}x y x yΩ = ≤ ≤ ≤ ≤  
 
where  xn  and yn  are co-ordinates of the vector normal to the boundary, which appears in the 

boundary integrals, in the case when integration by parts is performed. 
 
(iii) Second non-symmetric Galerkin form 
 

Find such trial function 0w C∈ , that for an arbitrary test function  2v C∈  the following variational 
equation is satisfied: 
 
 

( ) ( ) ( )'' '' ' ' ' 'x y x x y y x x y yw v v d w n v n v d v n w n w d f v d
Ω ∂Ω ∂Ω Ω

+ Ω − ⋅ ⋅ + ⋅ ∂Ω + ⋅ ⋅ + ⋅ ∂Ω = ⋅ ⋅ Ω∫ ∫ ∫ ∫            (3.60) 

{( , ), 0 1, 0 1}x y x yΩ = ≤ ≤ ≤ ≤  
 
Applied for calculations were two the most commonly used types of boundary value problem 
formulation, namely the local (3.56) one and the variational symmetric of Galerkin type (3.59). Below 
given are the MFD algorithms for those formulations: 
 
1. The MFD algorithm for the local formulation (3.55) 
 
(i) Starting forms of the coefficient matrix  A and right hand side vector b of the SLAE 
 

(0) (0)
, 0, 0, , 1,2,...,i j iA B i j n= = =                    (3.61) 

 
(ii) Discretization of the differential equation 
 

( ) { } { }( ) ( ) ( ) ( )
4, ( ) 6, ( ) 4, 6,

1

( , ) , 1,2,...,
wm

w w w w
j j l j j l l l l l

j

m w m w f x y l n
=

+ − ∆ − ∆ = =∑                            (3.62) 

 
(iii) SLAE  coefficients 
 

{ } { }
( ) ( )

, 4, ( ) 6, ( )

( ) ( )
4, 6,

, 1,..., ; 1,...,

( , )

w w
l j j j l j j l w

w w
l l l l l

A m w m w j m l n

B f x y

 = + = =


= + ∆ + ∆

                                                       (3.63) 

 
(iv) Final form of the SLAE 
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{ }

( )
,

( )
,

..., , 1,2,...,

..., , 1,2,...,

L
i j j i i

H
i j j i i i

A w B w i j n

A w B w i j n

⋅ = → = =

⋅ = + ∆ → = =
      (3.64) 

 
Below presented are results for benchmarks no.1 and no.2 for one fine regular mesh with  8×8=64  
nodes. Shown are LO solution error and HO solution error. The values between the nodes were 
approximated using MWLS technique. Additionally, mean and maximum error values were 
calculated.  
 
(i) Results for the benchmark no.1 
 
Fig.3.23 presents the comparison of the true solution errors, the graph scale is adjusted to the level of 
the LO solution error, for better illustration of the quality of the HO solution. The HO improvement 
concerns not only the MFD solution but also its subsequent derivatives e.g. 'yw  (Fig.3.24) or 'xxw  

(Fig.3.5).  
 
Beside the local distribution of the true solution errors, shown are the mean and maximum values of 
errors. They are placed near the graphs. 
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Fig.3.23:  LO and HO true error solutions of (3.55), regular mesh with 64 nodes – 
benchmark no.1, 
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Fig.3.24:  LO and HO true error derivatives 'yw  of (3.55), regular mesh with 64 nodes – 

benchmark no.1 
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Fig.3.25:  LO and HO true error derivatives 'xxw  of (3.55), regular mesh with 64 nodes – 

2D benchmark no.1 
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Further calculations were made for the benchmark no.1 using irregular mesh, randomly disturbed from 
the original regular one (Fig.3.26), with the same number of 64 nodes.  
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Fig.3.26: Arbitrarily irregular mesh 

 
The exact LO and HO true solution errors are shown in Fig.3.27. 
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Fig.3.27: LO and HO true error solutions of (3.55), irregular mesh with 64 nodes – benchmark 
no.1 



 59 

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
SFORMULOWANIE:LOKALNE,SOLUTION ERRORS (eLT,eHT)

log10(h)

log10(e)

eLT
mean (a=2.3884)

eHT
mean (a=5.1597, Imp = 2.1603)

( )

( )

H

L

a

a

 

Fig.3.28: Convergence of the MFD solutions of (3.55) on the set of regular meshes – 2D 
benchmark no.1 

 
The convergence of the LO and HO exact solution errors were examined on the set of twenty more 

and more dense, regular meshes. The starting coarse mesh has 3×3=9 nodes whereas the most fine 
mesh consists of  22×22= 484 nodes. Each mesh is represented by the mesh modulus  h  and the mean 
value of the true solution error  e only. Problem of choosing the optimal finite representation of the 
arbitrarily irregular mesh will be discussed in Chapter 6 in a more detailed way. 
 
The results for the benchmark no.1 are presented in Fig.3.28. Convergence rates, evaluated using linear 
approximation, are 2.39 for the low order solution, and 5.16 for the HO one, what yields solution 
convergence improvement 2.16 (in the logarithmic scale). The HO true solution error decreases over 
100 times faster than the low order one. 

0
0.2

0.4 0.6
0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

x

 eLT , FUNCTION w

y

 eLT

emean  = 4.36e-2

emax = 1.81e-1

0
0.2

0.4 0.6
0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

x

 eHT , FUNCTION w

y

 eHT

emean  = 6.35e-3

emax = 1.85e-2

 

Fig.3.29: LO and HO solutions of (3.55), regular mesh with 64 nodes – 2D benchmark no.2 
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Fig.3.30: LO and HO error solutions of (3.55), irregular mesh with 64 nodes – 2D benchmark 
no.2 

 
(ii) Results for the  benchmark no.2 
 
At first, considered was a regular mesh with 64 nodes. LO and HO solution errors are presented in 
Fig.3.29 in the same scale, corresponding to the maximum value of the LO solution error. The mean 
and maximum errors dropped 10 times. This is the effect of the form of the analytical result, which 
exhibits large amount of gradients.  
Later on, a irregular mesh (Fig.3.26) was used for calculations. Fig.3.30 presents comparison of the 
true solution errors obtained on that mesh. 
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Fig.3.31: Convergence of the MFD solutions of (3.55) on the set of regular meshes – 2D 
benchmark no.2 
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Finally, convergence of the both MFD solutions was examined on the same set of twenty regular 
meshes, as for the benchmark no.1 The results - convergence rates and solution convergence 
improvement – are presented in Fig.3. 31. 
 
2. The MFD algorithm for the variational principle  (3.59) follows the notations introduced for the 

algorithms used in the case of the 1D problems. Here numerical integration is performed on the N 
Delaunay triangles, treated as the integration cells (integration between the nodes, refer to the 
Chapter 2). On each triangle, defined on nodes 1 1 2 2( , ),( , ),( , )k k k k k kx y x y x y+ + + + , the linear 
interpolation  

 
2

0

( , ) ( , ),k i k i k i i i i
i

v x y v N x y N a x b y c+ + +
=

= = + +∑   

 
was applied for the test function v. The MFD formulae for the trial function w were generated 
using the MWLS approximation and 9 nodes MFD stars. Here: N – number of Delaunay triangles 
in the domain, t – Delaunay triangle no. and k – Delaunay triangle edge no. 

 
(i) Starting forms of the coefficient matrix  A and the right hand side vector B of  the SLAE 
 

(0) (0)
, 0, 0, , 1,2,...,i j iA B i j n= = =                    (3.65) 

 
(ii) Discretization of the variational principle 
 

{ } { }

{ } { }

2 2
( ) ( ) ( ) ( )
2, ( ) 2, 3, ( ) 3,

1 1 0 1 0

( ) ( ) ( ) ( )
, 2, ( ) 2, 3, ( ) 3,

1 1

g w w

w w

N m m
w w w w

t l j j l l i i t j j l l i i t
l j i j i

m m
w w w w

t k l j j l l x j j l l y
j j

m w a v m w b v

m w n m w n

ω

ω

+ +
= = = = =
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 − ⋅ − ∆ + ⋅ − ∆ +   
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∑ ∑

J

J
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1 1
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2 2 2

0 0 0
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1 0 0 0

( , ) ; 1,...,
g

l i i t l i i t i i t
i i i

N

i l l l l i i t l i i t i i t
l i i i

x a v y b v c v

f x y x a v y b v c v t Nω

+ + +
= = =

+ + +
= = = =

 
⋅ + + = 
 

 
= ⋅ + + = 

 

∑ ∑ ∑

∑ ∑ ∑ ∑J

          (3.66) 

 
(iii) Coefficients of the SLAE 
 

           

( ) ( )( )
( )

( ) ( )( ){ }

( ) ( ) ( ) ( )
, 2, 3, , 2, 3,

( ) ( ) ( ) ( )
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w w w w
i t j t l j i j i t k l j x j y i l i l i

i t i l l l i l i l i

w w w w
t l l i l i t k l l x l y i l i l i

w

A m a m b m n m n a x b y c

B f x y a x b y c

a b n n a x b y c

t N k j m l

ω ω

ω

ω ω

+

+

 + = − + + + + +

 + = + + +


+ ∆ + ∆ + ∆ + ∆ + +

= = =

J J

J

J J

1,..., ; 0,...,2gN i= =

                     (3.67) 

 
(iv) Final form of the SLAE 
 

           
{ }

( )
,

( )
,

..., , 1,2,...,

..., , 1,2,...,

L
i j j i i

H
i j j i i i

A w B w i j n

A w B w i j n

⋅ = → = =

⋅ = + ∆ → = =
                 (3.68) 
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1. Results for the benchmark no.1 
 
Similarly like for the local formulations, the LO and HO true solution errors are presented for the 
regular (Fig.3.32) and irregular meshes (Fig.3.33), both with 64 nodes. Fig.3.34 presents LO and HO 
solutions convergence. 
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Fig.3.32:  LO and HO true error solutions of (3.59), regular mesh with 64 nodes – 2D 
benchmark no.1 
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Fig.3.33:  LO and HO true error solutions of (3.59), irregular mesh with 64 nodes – 2D 
benchmark no.1 
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Fig.3.34: Convergence of the MFD solutions of (3.59) on the set of regular meshes – 2D 
benchmark no.1 

 
2. Results for the benchmark no.2 
 
Similarly like for the local formulations, the LO and HO exact solution errors are presented for the 
regular (Fig.3.35) and irregular mesh (Fig.3.36) with 64 nodes. Fig.3.37 presents LO and HO solutions 
convergence. 
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Fig.3.35: LO and HO true error solutions of (3.59), regular mesh with 64 nodes – 2D benchmark 
no.2 
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Fig.3.36: LO and HO error true solutions of (3.59), irregular mesh with 64 nodes – 2D 
benchmark no.2 
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Fig.3.37: Convergence of the MFD solutions of (3.59) on the set of regular meshes – 2D 
benchmark no.2 

 
In this Chapter, examined were the convergence rates on the set of regular meshes only. The more 
sophisiticated convergence analysis, on the set of arbitrarily irregular meshes, will be considered in the 
Chapter 6. 
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3.4 Summary 
 

Presented was a Higher Order approximation approach, based on correction terms introduced into 
the MFD operators. These additional terms result from expansion of relevant MFD operators 
(expressed in terms of linear combinations of nodal function values) into the Taylor series. The 
expansion of unknown smooth function  u  into the Taylor series produces additional higher order 
terms ∆ , considered here as a correction, involving the HO derivatives. They are evaluated using 
appropriate formulae composition (inside the domain). The correction terms may also include 
singularities as well as jump terms of function u , and / or its derivatives. Correction terms modify the 
right hand sides f  of the MFD equations in such a way that the final HO solution ( )Hu  depends only 
on the truncation error of the Taylor series, and does not depend on the quality of the MFD operator 
used. The whole solution process may need only two steps (two solutions of the MFD equations), both 
with the same MFD operator L , though with different right hand sides. Thus the rate of the local 
approximation of u  is raised without introducing new nodes or generalised degrees of freedom, into 
the MFD operator L .  

In the MFDM, the Higher Order correction terms are generated together with MFD formulae, 
using the HO MWLS approximation technique. The whole solution approach was applied in numerical 
algorithms for analysis of 1D, and 2D mostly linear boundary value problems, posed in both the local 
and global formulations. Their extension of nonlinear tasks is considered in Chapter 8. 

This approach was tested on many benchmark problems, providing very promising results. 
Considered were 

• regular and irregular meshes, 
• local and global formulations, 
• two types of MFD solutions, namely low order and Higher Order ones, 
• set of regular, more and more dense, meshes. 
 

Among the examined features of the solution approach, the most interesting are:  
• comparison of the local distribution of the true solution errors, corresponding to the low order 

(LO) and higher order (HO) solutions, 
• comparison of the MFD solutions based on the local and variational formulations, 
• study on convergence rates and solution convergence improvement, due to HO MFDM 

approach. 
 
Results of tests showed that, after the HO correction, the true solution error is reduced approximately 
10÷100 times, depending on the mesh type, and formulation type. Convergence test of the MFD 
solutions using a set of regular meshes indicated that the HO solution converges over 2 orders faster 
(in the logarithmic scale) than the LO solution, based on the standard MFD approximation.  

So far, however, boundary conditions of the problems considered were of very simple, essential 
nature. It will be shown, in the following Chapter 4, how to deal with the boundary conditions of any 
type, and how to improve in the boundary zones the approximation of the unknown function, and its 
derivatives. Higher Order approximation, applied here, works efficiently also when combined with the 
other boundary techniques.  

It is worth stressing here, that only the true solution errors were presented in this Chapter. 
Therefore, needed is a capability of the approach to high quality a’posteriori estimation of solution and 
residual errors, for both local and global (integral) formulations. This is the main topic of Chapter 5. 

Moreover, a convergence analysis was done so far on a set of regular meshes only. Appropriate 
generation criteria of irregular adaptive meshes, as well as the solution and residual convergence 
analysis will be discussed in the Chapter 6. 

 
 
 
 
 
 



 66 

4. MFD discretization of the boundary conditions 
 

4.1 Problem formulation 
 

High quality discretization of the essential, and natural type boundary conditions, always 
presented one of the major difficulties in the classical FDM, especially when dealing with irregular 
(curvilinear) domains and regular meshes [14, 21, 53 ÷ 56, 74, 75, 109]. Though use of arbitrary 
irregular clouds of nodes [53 ÷ 56, 75] removed various obstacles and provided much better bases for 
such a discretization, there is still problem to find the best solution approach. As it was shown in the 
simple example in the previous Chapter (simply supported beam deflection problem), approximation 
quality in the boundary neighbourhood, should be at least the same as inside the domain. Such 
requirement, however, is usually not satisfied because of lower order differential operators on the 
boundary than inside the domain (this used to be extended also to approximation quality as well). 
Moreover, there is an offset of the central node, located on the boundary, from the star centre of 
gravity where the MFD approximation is expected to be the most accurate. 

Various concepts have been proposed to deal with reasonable MFD discretization of boundary 
conditions. Some of them were considered briefly in the Chapter 2. In the present Chapter, attention is 
laid upon problems of raising of approximation quality in the boundary zones. 

 
At first, the second order linear elliptic boundary value problems are considered here 

 
' ' '' '' '' ( , )

( , )

x y xx xy yyau bu cu du eu ru f x y in

u
u g x y on

n
β

+ + + + + = Ω

 ∂+ = ∂Ω ∂

                   (4.1) 

 
The following problems will be discussed  
 

(i) imposing the essential boundary conditions ( 0β = ), 

(ii) discretization and imposing the natural boundary conditions ( 0β ≠ ), 
(iii) evaluation of the Higher Order derivatives on the boundary, 
(iv) effective MFD approximation in the boundary zones. 

 
Proposed techniques and algorithms will be illustrated on some simple 1D and 2D benchmark 
problems, of the same type as analysed in the previous Chapter. 
 

4.2  Essential boundary conditions 
 
Satisfaction of the essential boundary conditions in the discrete methods depends on the way the local 
approximation of the unknown function is built. In the FEM [119, 120], the shape functions iN  are 

used in order to obtain approximation 
 

( ) ( )i i
i

u x N x u=∑             (4.2) 

 
These shape functions are generated by interpolation done over the specified element. They satisfy the 
delta Kronecker property  
 

( )i j ijN x δ=              (4.3) 
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at nodes of the FE mesh, and, in the natural way, satisfy the essential boundary conditions at the 
boundary nodes (Fig.4.1a). In the MFDM [75], the pseudo-shape functions iΦ , used for 

approximation of function  
 

( ) ( )t
i i

i

u x D x u= = Φ∑p u            (4.4) 

 
in general, may not satisfy the delta Kronecker condition (Fig.4.1b) 
 

( )i j ijx δΦ ≠              (4.5) 

 
unless using singular weighting factors, when iΦ  are generated. 

 

1

1

1 1

1

1

iN iΦ

a) FEM b) MFDM
 

Fig.4. 1: Approximation a) in the FEM and b) in the MFDM for the non-singular weights 

 
Therefore, when dealing with the local formulation of the boundary value problem, generation 

of the MFD formulas should be performed using singular weight functions (2.21). Singular weights 
provide interpolation approach i.e. assure that the approximation of the unknown function (4.4) 
satisfies the condition ( )i iu x u=  (Fig.4.2). When singular weight functions are applied in the MFD 

formulae generation, and the local formulation of the b.v. problem is used, the essential boundary 
conditions may be easily satisfied then by , 1,2,...,j j ju g j n= =   at boundary nodes 

, 1,2,...,j jP j n= . Imposition of such boundary conditions is usually performed on the level of 

the SLAE, similarly like in the FEM, by the appropriate modification of the coefficient matrix and the 
right hand side vector. 

 

u(x,y)

u(x,y)

u(x,y)

global
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Fig.4. 2: Local approximation in the MFDM 
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However, singular weights alone may not be sufficient in the case of the global formulation 
(variational principle, functional minimisation) and use of a local approximation spanned over the 
Gauss points. Additional conditions are required, like enforcing satisfaction of the boundary 
conditions by the local MWLS approximation. The boundary conditions should be enforced on the 
level of the weighted error functional (2.16) minimisation [80]. The delta Kronecker property (4.3) is 
satisfed then. 

 
The problem of boundary conditions discretization and delta Kronecker property causes a lot 

of misunderstandings in the recent literature devoted to meshless methods [4, 5, 8, 26 ÷ 28, 52]. 
Instead of using singular weight functions, many other Authors proposed and applied various, usually 
time consuming, approaches, e.g. 

(i) use of the Lagrange multipliers [52], 
(ii) use of the penalty function [4, 5, 52], 
(iii) transformation of the pseudo-shape functions [28], 
(iv) appropriate correction of the pseudo-shape functions [28],   

 

( , ) ( ) ( ) ( )h b nb nb
I I Ix t W x U t W x dΦ = +         (4.6) 

 
(v) introduction of the singularities on the boundary [4, 52], 
 

( )
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II
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φ

φ
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        (4.7) 

 
(vi) combined FEM (on the boundary) – MFDM (inside the domain) analysis [43], 
(vii) local boundary integrals approach [4]. 
 

 
4.3  Natural boundary conditions 

 
When dealing with the boundary condition of the natural or combined type ( 0β ≠  in (4.1)), 

special MFD approximation is required at the boundary nodes. There are several options available, 
already mentioned in the Chapter 2 

 
(i) use of  l  internal nodes only (Fig.4.3) 
 

,i ix u ,j jx u

 
Fig.4. 3: MFD approximation on the boundary: use of internal nodes 

 
This kind of approximation may be applied in all types of boundary value problems. 
However, its quality is rather poor, especially when providing the lowest order 
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approximation of the given boundary condition, because of a significant offset of the 
central boundary node from the centre of the gravity of a boundary MFD star. 

 
(ii) use of natural boundary conditions, by means of the generalised MWLS approximation, 

applied on the boundary then (e.g. use of the normal derivative (4.1) - 
u

n

∂
∂

- at the 

boundary nodes) - (Fig.4.4),  
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Fig.4. 4: MFD approximation on the boundary: use of internal nodes and boundary conditions 

 
(iii) use of generalised degrees of freedom, briefly discussed in Chapter 2. Those additional 

degrees of freedom may be assumed at every node of a boundary MFD star. The number 
of nodes in such MFD star may be reduced, providing the approximation of better quality 
then. 

 
(iv) use of  1l  fictitious external nodes (Fig.4.5) 

 
This type of approximation provides very good results, although it may be applied in the 
elliptic b.v. problems only. Using the language of mechanics, in hyperbolic problems 
(dynamics), introduction of additional external nodes raises the total “mass of the system”. 
As a consequence, it may significantly change values of eigen frequencies.  
At most cases, the nodal fictitious values may be determined by using the closest nodes 
from the domain  
 

1

1 1

ll
f

i j j k k
j k

u a u b u
= =

= ⋅ + ⋅∑ ∑  

 
and additional information, like appropriate natural boundary condition, as well as domain 
equation specified on the boundary. 

 
(v) use of the multipoint approach 

 
As for the domain operators, considered in the previous Chapter, the multipoint approach, 
introduced by Collatz  [15], and developed in [32, 81, 82, 83], may be applied in the 
specific or general forms. In the specific one,  the rank of the approximation is raised by 
the right hand side function values, applied as the degrees of freedom besides the standard 
ones. In the general case, introduced are additional, generalised degrees of freedom in the 

form of subsequent derivatives  ( )ku , both in the domain and on its boundary. Their 
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relations ( )ku u−  with the standard unknown function nodal values are generated by 
means of the MWLS approximation. 

 

,i ix u ,j jx u

, ~ ,f f
k k j jx u x u

 
Fig.4. 5: MFD approximation on the boundary: use of internal nodes and external fictitious ones 

 
(vi) use of the Higher Order approximation, provided by correction terms 
 

The approximation order on the boundary may be raised by considering relevant 
correction terms, rather than by introducing new nodes or generalised degrees of freedom 
into the MFD operator. Those terms come from the Taylor series expansion of the MFD 
star coefficients with the respect to the central node, and taking into account HO terms. 
Their values may be evaluated using appropriate formulae composition inside the domain, 
and by other techniques on the domain boundary. This problem will be discussed in the 
following section. 

 
4.4  Higher Order approximation on the boundary 

 
Consider boundary value problem posed in the local formulation (2.1), with appropriate 

boundary conditions (2.2) and HO approximation, provided by correction terms. These correction 
terms ,i i I Ω∆ ∈  are originated from the Taylor series expansion, for MFD operators iLu  inside the 

domain and on its boundary, already discussed in the previous Chapter - (3.13) 
 

( ) ( ) ( ) ( ) ,b b b b
b j b j j j j j jL u u R g R i I∂Ω= − ∆ − = − ∆ − ∈L                     (4.8) 

 

The truncation error ( )b
jR  is neglected, and therefore, considered correction terms ( )b

j∆  provide higher 

order derivatives up to the specified order assumed 
 

( ) ( 1) (2 )( ,..., )b m n
j j ju u+∆ = ∆            (4.9) 

 
Here m is the basic approximation order for the boundary MFD operator bL , and n m>  is the basic 

approximation order for the internal MFD operator L . The most convenient is to consider correction 
terms up to the 2n-th order. 
 

The general approach for evaluating the higher order derivatives inside the domain is 
appropriate formulae composition, and use of the low order solution. However, this method does not 

provide good results in the case of boundary derivatives, appearing in i∆  and ( )b
j∆ .  They may be 
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divided into two groups, namely the low order derivatives (1) ( ),..., m
j ju u  and the higher order ones 

( 1) (2 ),...,m n
j ju u+ .  

(i) low order derivatives (1) ( ),..., m
j ju u  may be calculated using the MFD formulae, or - in the 

simple cases - the boundary condition, or the differential equation from the domain, but 
specified on its boundary; 

(ii) the higher order derivatives ( 1) (2 ),...,m n
j ju u+  in the boundary nodes should be replaced by the 

ones at closest internal nodes in the domain, by the means of the Taylor series expansion, and 
then calculated as it was proposed in the previous Chapter for internal derivatives. 

 
Basic MFD operators, generated at the boundary nodes, are usually of worse quality, when 

compared to the ones inside the domain. This effect may be caused by not sufficient accuracy of the 
correction terms evaluation. The Higher Order solution may need an additional smoothing procedure 
then.  

The most primitive as well as time-consuming method, and therefore, not considered here, is 
to apply an iterative process 
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with starting values for correction ( )(0)(0) ( ) 0b
i i∆ = ∆ = , and to control the solution convergence 
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u u
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where admε  denotes the admissible error threshold. 

 
The proposed iterative procedure (4.10) is convergent in the most cases, to the exact solution within 
the polynomial order assumed in the MWLS approximation (here, 2n-th). However, it requires 
multiple solutions of the SLAE, though with the same left side (coefficient matrix). Therefore, higher 
order boundary derivatives need special treatment.  
 

Various approaches are discussed and proposed, in order to evaluate boundary derivatives 
1,2,..., 2k n=  in the most accurate way. Their concept lies in combination of the  various MFD 

approximation techniques in the boundary nodes, considered in the previous sections, with use of 
additional correction terms 
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l
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j

u a u u u u+ +
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here  l   is the number of MFD star nodes. The MFD approximation (4.12) may be applied by 
 

(i) using only internal nodes; the approximation is of low quality then (Fig.4.6) 
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l
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( , )i ix u

( , )j jx u

 
Fig.4. 6: Higher Order derivatives calculation: use of internal nodes 

 
(ii) using internal nodes with both the boundary conditions and domain equation specified on 

the boundary (Fig.4.7), 
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Fig.4. 7: Higher Order derivatives calculation: use of internal nodes and known boundary values 

 
(iii) using internal nodes and generalised degrees of freedom (Fig.4.8) 
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Fig.4. 8: Higher Order derivatives calculation: use of internal nodes and generalised degrees of 

freedom 
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(iv) using the specific or general multipoint approach (introduced in [15], and further 
developed in [32, 81, 82, 83]), 

 
In the case of specific multipoint approach, one may use the a’priori known values e.g. of 
the right hand side function of the differential  equations, in order to raise the 
approximation rank and apply them in the FD multipoint formula 

 

1 1

l l

j j j j
j j

a u b f
= =
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In the general multipoint approach, approximation is based on the subsequent derivatives 
values, which are generated e.g. by the means of the MWLS approximation in order to 
provide additional relations 

 
( )k

i iu u÷                       (4.17) 

 
defined in patch of stars for each node considered as the central in the domain and on its 
boundary. 
 

(v) using internal and additional external fictitious nodes (Fig.4.9), 
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Fig.4. 9: Higher Order derivatives calculation: use of internal nodes and external fictitious nodes 

 
(vi) combinations of the above techniques. 

 
The above proposed general approach will be presented in more detailed way, separately for 1D and 
2D cases. 
 
4.4.1 1D case 
 
Consider the second order 1D boundary value problem, posed in the local formulation (Fig.4.10) 
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0 1 2
h h

boundary node internal nodes

 
Fig.4. 10: Boundary node neighbourhood in 1D boundary value problem 

 
where , , , ,a b c α β  - functional or constant coefficients.  
Though proposed approach holds for irregular meshes and the MWLS approximation, mesh with 
regular spacing  h  and 2nd order FD operators will be considered here, for the sake of simplicity. 
 
Inside the domain, the MFD discretization is performed with use of the central MFD operator 
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whereas the MFD discretization in the boundary node was performed using the simplest FD operator 
possible 
 

1 0
0 0 0b b

u u
u L u u

h
α β−≈ = +L                      (4.21) 

 
After expansion 0bL u  and , 1,2,...,iu i n=L  into the Taylor series one obtains 
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where ( )L
i∆   and ( )

0
b∆  - considered correction terms up to the 4th order, 0 0R ≈  and 0iR ≈   - 

neglected truncation errors.  

One has to evaluate the set of low and higher order derivatives, namely 0 0 0 0, , ,I II III IVu u u u  and 

, , 1,2,...,III IV
i iu u i n= . The internal derivatives , , 1,2,...,III IV

i iu u i n=  may be evaluated by 

appropriate formulae composition 
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and use of the low order solution (without correction) 
 



 75 

1 1

( )

0 0 1 1
2

1,2,..., 2
2

I i i
i

i i L
i

IIb i i i
i

u u
uLu f i n hu

u g u u u
u

h

+ −

− +

− == = 
⇒ → = − +  =



L
                (4.25) 

 

The low order derivatives on the boundary , 0 0,I IIu u , may be calculated using both the boundary 

condition and domain equation, specified at the boundary node 
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The higher order derivatives on the boundary 0 0,III IVu u  are replaced by the internal ones using the 

Taylor series expansion 
 

0 1 1 0 1
III III IV IV IVu u hu u u= − =                     (4.27) 

 

and the internal higher order derivatives 1 1,III IVu u , calculated above (4.24). 

The finally improved discretization of domain and boundary conditions yields the Higher Order 
solution, exact for the fourth order polynomial  
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4.4.2 2D case 
 
Considered is the second order elliptic problem (4.1), in a curvilinear boundary shape domain 
(Fig.4.11). After generation of the MFD formulae for the complete set of derivatives, up to 2nd order, 
one obtains the MFD formula for the differential operator inside the domain 
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and for the differential operator on the boundary (4.12), which specific form depends on the strategy 
adopted (4.13) ÷ (4.18) 
 

( )( , , , , ,...) 1,2,..., 0,1,2,...s
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The low order approximation (4.29) and (4.30) allows for obtaining the low order MFD solution 
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The Taylor series expansion applied to the relations (4.29) and (4.30), yields the following form of the 
correction terms: 
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Fig.4. 11: 2D boundary value problem 

 
where 
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and 
 

, ,,...,III IV
i xxx i yyyyu u  - internal higher order derivatives, evaluated by means of the formulae composition 

inside the domain, e.g. 
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, ...

II II IIIII I III I IV II
i xxx i x i xxy i y i yyyy i yyxx xx yy
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(0) (2 ),..., n
i iJ J  - jump terms of the subsequent derivatives (these may be known a’priori, or constitute 

additional unknowns), 
 

, ,,II II
i x i yu u  - low order derivatives on the boundary, evaluated e.g. by using the boundary condition and 

domain equation specified on the boundary 
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, , ,, ,II II II
i xx i xy i yyu u u  - low order derivatives on the boundary, evaluated using MFD formulae of high 

quality, e.g. generalised HO MWLS approximation, most convenient here, e.g. 
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, ,,...,III IV
i xxx i yyyyu u  - higher order derivatives on the boundary, evaluated by replacing them with the higher 

order internal ones, taken from expansion into the Taylor series, and formulae composition, e.g. 
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0, 3, 3, 3,
III III IV IV

xxx xxx xxxx xxyyu u hu ku= − −                     (4.37) 

 
Having evaluated the correction terms, one finally obtains an improved HO MFD discretization of the 
domain and boundary differential equations, that yields the HO MFD solution 
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4.5 MFD discretization in the boundary zones 

 
Beside approximation in the boundary nodes, one has to treat the boundary zones with a care, 

especially in the case of curvilinear boundaries. Some approaches, designed for the classical FDM 
with regular meshes, were based on the notion of the boundary node [109]. It was not necessarily 
located on the boundary itself, but its FD star has to involve the points on boundary, with prescribed 
values, taken from boundary conditions. Those values were used as a degrees of freedom of a 
modified FD operator, instead of standard nodal values (Fig.4.12). The most sophisticated approach, 
called the Mikeładze method, used the second order interpolation method at the boundary points.  

 

(i,j) (i’’, j’’)(i’, j’) Q

δh

 
Fig.4. 12: Boundary technique for the regular mesh 

 
However, this approach has only historical meaning nowadays. Such a problem is being solved in the 
MFDM by using arbitrarily irregular clouds of nodes, and the MWLS approximation. The MFD stars 
consist of a number of nodes larger, than the assumed approximation order requires. 

There are three main approaches, in the MFDM, in order to discretize the boundary zones with 
a prescribed accuracy 

 
(i) use of a refined mesh, with the mesh density raised in the required zones, 
(ii) raising the order of the local approximation, 
(iii) combination of (i) and (ii). 

 
One may consider clouds of nodes, with increased mesh density in the specified sub-domains. 

However, such refinement may be done a’priori for the initial mesh. Irregular cloud of nodes may be 
generated and modified using e.g. a Liszka type mesh generator, prescribed mesh density requirement 
in the chosen locations (Fig.4.13), and an a’posteriori residual error estimation. This problem will be 
considered in the following Chapters. 
 
Approximation order of the MFD operators in the boundary neighbourhood may be raised using 
several techniques. Most of them were discussed in details in the previous sections. They are briefly 
presented together in Fig.4.14. 
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Fig.4. 13: Boundary refinement for the MFDM 
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Fig.4. 14: MFD approximation in the boundary neighbourhood 

 
All of the techniques presented in Fig.14 were discussed in details in the previous sections. Here, 
attention will be laid upon the problem of boundary condition imposition on the level of the local 
MWLS approximation. When it is done at every point in the considered boundary zone, the MFD 
approximation is expected to be more precise there.  
 
Imposition of the boundary condition 0 0( )u P u=  may be done either after generation of the MFD 

equations or on the level of the local MWLS approximation [80], when dealing with the MFD 
formulae generation in the boundary zone. The approach uses the so called local-global MWLS 
approximation approach [36], which allows for taking into account both the equality and inequality 
local constraints.  
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In the 1D case, the local approximation may additionally satisfy the boundary condition 0 0( )u x u=  

(Fig.4.15) in the exact way. This requirement is involved in the generation of the MFD schemes in the 
boundary neighbourhood, e.g. in the case of global formulations, when those schemes are sought at 
Gaussian points, or in the postprocessing. It is performed on the level of the error functional (2.16), 
after its minimisation is done, and treated as the constrained optimisation problem. The appropriate 
solution approach is briefly discussed below. 
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Fig.4. 15: Local MWLS approximation with boundary condition 

 
After expanding the equality condition 0 0( )u P u= , into the Taylor series 
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one may eliminate the highest order derivative value (here, n) 
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and substitute this unknown into the interpolant matrix  P,  and the vector of nodal values  q (2.17) 
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Afterwards, the minimisation of the functional  I  is done in the standard way, producing set of 
derivatives 
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4.6 Numerical examples 
 
Boundary techniques, proposed and discussed above, were tested on a variety of 1D and 2D 
benchmark tests. Among many aspects of these tests, the most interesting were 
 

• Controlling the approximation order on the boundary, with HO correction terms, 
• Examination of the approximation quality on the boundary, when using the HO 

approximation, provided by correction terms, 
• Comparison of the boundary approximation, using HO correction terms, with other boundary 

discretization approaches, 
• Combination of the HO approximation, with the other boundary techniques, especially with 

the use of generalised degrees of freedom, 
• Examination of various boundary schemes and their application in evaluation of the correction 

terms, 
• Effective MFD approximation in the boundary neighbourhood. 

 
Some representative results out of a variety of tests done, are presented below. 
 
4.6.1 1D tests 
 
Cantilever beam deflection 
 
This benchmark test was chosen in order to examine various discretization techniques of boundary 
conditions. Examined is also influence of the HO approximation, provided by correction terms. Local 
formulation 
 

[ ]
2

2

( )
( ) , ( ) , ( ) ( 2 ), 0,2

d w M x
f x f x M x P x L x L

dx EJ
= = − = − ∈                (4.44) 

 
was used (P – concentrated force), with boundary conditions  (0) 0 , '(0) 0w w= =  . 

Domain discretization was done using 3 nodes, with modulus h L=  (Fig.4.16). The exact values of 

deflections at nodes are 
3 3

0 1 2

5 8
0, ,

6 3
E E EPL PL

w w w
EJ EJ

= = = . 

 

P

2L

1 ?w =
2 ?w =

0 1 2 x

w
 

Fig.4. 16: Cantilevered beam under concentrated force 

 
Three types of discretization of boundary condition '(0) 0w =  are considered. Each time numerical 
solutions at nodes are compared with the appropriate exact values. 
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(i) using only internal nodes (poor quality approximation), and condition 0 0w =  
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w w w PL
f w w
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                             (4.45) 

 
 Results are very inaccurate, when compared with the exact values. 

 
(ii) using fictitious node fx h= − :  
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                 (4.47) 

 
  The results are much better than in the previous case. 
 

(iii) using a generalised MFD formula for the second derivative on the boundary 0 ''w , built on 

the mixed degrees of freedom 0 0 1, ',w w w  
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                            (4.48) 

 
The same results were obtained using two different discretization methods. In the last two 

cases approximation of the same, second order was enforced on the boundary, while in the first case 
the approximation order on the boundary was one less than inside the domain. In order to provide a 
reasonable quality of the FD solution, FD formulas and discretization of the boundary conditions 
should be based on approximation of at least the same order as the one used inside the domain.  

However, these results may be additionally improved by the means of the HO correction terms 
or the multipoint approach. HO approach will be applied for these three variants separately.  

 
(iv) using only internal nodes, and condition 0 0w = , with HO correction terms 

 
MFD boundary operator correction 
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the low order derivatives  0 0' , ''w w  are evaluated using boundary and domain equations 

 

0 0 0 0' 0 , '' 2
PL

w g w f
EJ

= = = =                    (4.50) 

 

whereas the higher order ones, 0 0,III IVw w  are replaced by those from the closest internal node 

(an appropriate solution smoothness is required then) 
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internal higher order derivatives, 1 1,III IVw w  are evaluated using formulae composition 
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MFD internal operator correction 
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Higher order solution 
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which is, in this case, the exact analytical solution as well. 

 
(v) using fictitious node fx h= −  with HO correction terms 

 
MFD boundary operator correction 
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MFD internal operator correction 
 

0
12

1
,

2

0
12

1
,

2

1
2

1112
210

1

0
2'

0
'
002

10
0

==∆∆+=
+−

=

==∆∆+=
+−

=

IV

IVf

whf
h

www
Lw

whf
h

www
Lw

                (4.56) 

 
Higher order solution 
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(vi) using generalised MFD formula for the second derivative on the boundary 1 ''w , built on 

mixed degrees of freedom 1 1 2, ',w w w , with HO correction terms 

 
MFD boundary operator correction  
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Higher order solution 
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Each time the exact analytical results were obtained. Moreover, approximation order may be raised by 
the means of the multipoint approach. Here, presented will be the specific case, applied for the most 
rough boundary discretization (i) only 
 

(vii) using internal nodes, and condition 0 0w =  with the multipoint approach 

 

By expanding the differential operator values 0 1 2, ,II II IIw w w  into the Taylor series with the 

respect to the internal nodes 
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one obtains the multipoint formulae for the HO derivatives required in (4.50) and (4.53) 
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MFD HO multipoint equations and solution 
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The above results, taken from all boundary techniques (i) – (vii), are presented together in Tab.4.1 
 

node no.1 node no.2 

lp boundary technique 
solution 

3

1

PL
w

EJ
⋅  

true relative error 

1 1

1

E

E

w w

w

−
 

solution 
3

2

PL
w

EJ
⋅  

true relative error 

2 2

2

E

E

w w

w

−
 

(i) internal nodes 0 1 1 0.625 
(ii) g.d.o.f. 1 0.2 3 0.125 
(iii) fictitious node 1 0.2 3 0.125 
(iv) internal nodes + HO 1 0 3 0 
(v) g.d.o.f. + HO 5/6 0 8/3 0 
(vi) fictitious node + HO 5/6 0 8/3 0 

(vii) 
internal nodes + 

multipoint 
5/6 0 8/3 0 

Tab.4. 1: Comparison of qualities of various boundary discretization techniques 

 
Second order differential equation 
 

Considered is the 1D boundary value problem, posed in the local formulation (3.31). This test 
was executed using the full version of the MFDM, with the MWLS approximation. Here, examined 
are several methods of calculating boundary derivatives, which are involved in the HO correction 
terms, for both boundary and internal MFD operators (Fig.4.17). 
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Fig.4. 17: Various boundary techniques in 1D benchmark test 

 
(i) interpolation of the boundary derivatives, to the closest node in the domain, by means of 

the Taylor series expansion 
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(ii) MFD formulas for boundary derivatives, based on the internal nodal values of the second 

derivative (extrapolation by the means of MWLS approximation) 
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(iii) symmetric Higher Order MFD formula, based on the right hand side values (version I), 

exact for the 5th order polynomials 
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(iv) non-symmetric Higher Order MFD formula, based on the right hand side values (version 

II), exact for the 4th order polynomials 
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0 0 0 1 1 0 0 0 0 0 0
II I IIw w w f f fα α β γ ϕ≈ + + + +                              (4.67) 

 

0 0 1 1 0 0 0 0 0 0( , ), ( , ), ( , ), ( , ), ( , )a h a h a h a h a hα α α α β β γ γ ϕ ϕ= = = = = .   (4.68) 

 
For formulas, proposed in (iii) and (iv), the remaining derivatives values may be calculated using 
value of the 2nd order derivative (4.65) or (4.67) and e.g. the subsequent differentiation of the 
differential equation (3.31) 
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                (4.69) 

 
Benchmark no.2 (3.33), with non-polynomial, trigonometric exact solution, was applied in 
calculations. In Tab.4.2 (boundary node 0 0x =  ) and Tab.4.3 (boundary node 4 4nx = = ) presented are 

nodal values of the function w and its subsequent derivatives up to the 4th order assumed. They come 
from two steps of calculations, namely the low order solution  and the smoothed Higher Order one. 
For better comparison, presented are also the exact values and appropriate values of the true solution 
absolute error.  
 
Among results presented below, it is worth to stressing those, that come directly from the HO formulas 
(I) and (II), namely the values of the second derivatives. Let us observe the error levels of the second 
derivative, e.g. for the final results in the boundary node ‘0’; we have four values 0.097; 0.114; 0.00 
and 0.004, for four approaches (i) – (iv) respectively. One may come to the conclusion, that the most 
precise results are obtained, when using HO formulas (iii) – (iv), specially designed for this 1D test. 
Methods based on the Taylor series expansion and the Higher Order approximation (i) – (ii) are the 
simplest ones in use, but yield the least accurate results. Therefore, if this is possible, one should use 
boundary schemes of higher quality than the one applied for the internal nodes. Those schemes were 
consequently applied in the 1D benchmark tests, presented in the Chapter 2 and the following ones.  
 

MFD approximation on the boundary 

(i) Interpolation (ii) Extrapolation (iii) HO formu la (I) (iv) HO formula (II)  
Exact 
value 

value 
abs. 

error 
value 

abs. 
error 

value 
abs. 

error 
value 

abs. 
error 

Results for low order solution 

0w  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0
Iw  0.785398 0.709603 0,097 0.777519 0,010 0.835493 0,064 0.840090 0,070 

0
IIw  0.0 0.186603 0,187 0.186603 0,187 -0.050094 0,050 -0.054692 0,055 

0
IIIw  -0.484473 -0.791915 0,635 -0.656083 0,354 -0.434379 0,103 -0.429781 0,113 

0
IVw  0.0 0.384419 0,384 0.384419 0,384 -0.050094 0,050 -0.054692 0,055 

Results for Higher Order solution 

0w  0.0 0.0 0,000 0.0 0,000 0.0 0,000 0.0 0,000 
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0
Iw  0.785398 0.765936 0,025 0.750445 0,045 0.785480 0,000 0.789232 0,005 

0
IIw  0.0 0.097239 0,097 0.113920 0,114 -0.000082 0,000 -0.003834 0,004 

0
IIIw  -0.484473 -0.718614 0,483 -0.722637 0,492 -0.484391 0,000 -0.480639 0,008 

0
IVw  0.0 0.359986 0,360 0.365026 0,365 -0.000082 0,000 -0.003834 0,004 

Tab.4. 2: Comparison of the boundary techniques for node '0' - 1D benchmark no.2 

 

MFD approximation on the boundary 

(i) Interpolation (ii) Extrapolation (iii) HO formu la (I) (iv) HO formula (II)  Exact 
value 

value abs. 
error 

value abs. error value abs. error value abs. error 

Results for low order solution 

4w  0.0 0.0 0,000 0.0 0,000 0.0 0,000 0.0 0,000 

4
Iw  -0.785398 -0.778833 0,008 -0.839057 0,068 -0.817274 0,041 -0.818916 0,043 

4
IIw  0.0 0.094296 0,094 0.094296 0,094 0.031876 0,032 0.033517 0,034 

4
IIIw  0.484473 0.745762 0,539 0.625314 0,291 0.452597 0,066 0.450956 0,069 

4
IVw  0.0 0.384419 0,384 0.384419 0,384 0.031876 0,032 0.033517 0,034 

Results for rough Higher Order solution 

4w  0.0 0.0 0,000 0.0 0,000 0.0 0,000 0.0 0,000 

4
Iw  -0.785398 -0.754174 0,040 -0.758558 0,034 -0.786117 0,001 -0.787575 0,003 

4
IIw  0.0 0.102667 0,103 0.101749 0,102 0.000719 0,001 0.002177 0,002 

4
IIIw  0.484473 0.721328 0,489 0.707683 0,461 0.483754 0,001 0.482296 0,004 

4
IVw  0.0 0.359986 0,360 0.365026 0,365 0.000719 0,001 0.002177 0,002 

Tab.4. 3: Comparison of the boundary techniques for node '4' - 1D benchmark no.2 

 
HO schemes (iii) – (iv) are specially designed for 1D tests. In 2D problems, it may be difficult to 
obtain the relative formulae. Therefore, some additional and more general techniques, may be applied. 
Examples of such techniques are presented in the following subsection 4.6.2. 
 
Approximation in the boundary zones 
 
As the second aspect, examined were various techniques designed for effective calculation in the 
boundary neighbourhood. Especially interesting was behaviour of the MFD residual error 
 

i i ir Lu f= −                        (4.70) 
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evaluated at any arbitrary point of the mesh. The 1D benchmark no.2 (3.33) and regular mesh with 17 
nodes were considered first. The distribution of residual error (4.70) exhibits large values near the 
boundary (Fig.4.18a), due to the lower quality of the standard MFD operators there. Therefore, in the 
boundary intervals, three different techniques were examined and applied, namely 
 

(i) use of generalised degrees of freedom (Fig.4.18b) - the MFD operator, beside the standard 
nodal values, uses values of the first derivatives from the low order solution (4.15), 

(ii) use of HO correction terms (Fig.4.18c) , obtained from the low order solution (4.9), 
(iii) use of the boundary condition (Fig.4.18d), enforced in the local approximation (4.39 ÷ 

4.43) 
 
In the remaining internal intervals, assumed was  the same standard 2nd MWLS approximation type, 
without any additional techniques. 
 

All four graphs (Fig.4.18) were presented in the same scale, for better comparison of the 
results. Additionally, maximum residual values points, representing the interval between two 
neighbouring nodes were linked, stating the residual envelope (the solid line). Evaluating of residual 
representation in the mid-points will be discussed in the following Chapter. 
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Fig.4. 18: Various techniques for calculating residuals near the boundary, 1D benchmark 

problem no.2, regular mesh 

 
Results for 1D benchmark no.3 (3.34) are presented in Fig.4.19 (in the same scale), for regular 

mesh with 17 nodes, and for the irregular mesh with 34 nodes, generated adaptively, in Fig.4.20. 
Adaptation will be discussed in a more detailed way in Chapter 6. 
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Fig.4. 19: Various techniques for calculating residuals near the boundary, 1D benchmark 

problem no.3, regular mesh 
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Fig.4. 20: Various techniques for calculating residuals near the boundary, 1D benchmark 

problem no.3, irregular adaptive mesh 
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As it may be observed (Fig.4.18 and Fig.4.19), it is worth applying improved MWLS 
approximation techniques in the boundary neighbourhood for better accuracy of the results.  It is 
specially important, when dealing with the adaptive solution approach. The residual values at the mid-
points are used to examine, whether the new node should be inserted there. Therefore, high quality 
residual error estimation is required. 

In the test on an irregular mesh (Fig.4.20), refined a the part of the domain, where the large 
residual error appeared. However, there is still need for evaluating residuals with high precision in the 
boundary zone on the right end of the domain, where the mesh is coarse. 
 
4.6.2 2D tests 
 

Considered is the second order (Poisson) equation (3.55). Examined was the influence of the 
various boundary techniques on the quality of the Higher Order solution. As it was shown above, the 
way of calculating boundary derivatives has a significant impact on the final results. The higher order 
ones count the most since they constitute the correction terms from both the boundary and its closest 
neighbourhood. 

Calculations were performed for 2D benchmark no.1. Its exact result is expressed in terms of 
the trigonometric function (3.56). An irregular mesh with 16 randomly distributed nodes (Fig.4.21) is 
considered. 
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Fig.4. 21: Irregular mesh with 16 nodes 

 
In Fig.4.22 presented is a comparison of the true solution errors, evaluated upon the low order solution 
(Fig.4.22a), higher order solution after one HO iteration (with a rough correction, Fig.4.22b), and 
stabilised (smoothed), higher order solution (Fig.4.22c), obtained by means of the full iteration process 
(4.10). 
 
The true error analysis shows that there is not significant improvement after taking into account the 

first, not smoothed, HO correction – the errors ( ) ( )L Tw w−  and ( )1( ) ( )H T

rough
w w−  are on the similar 

level 310− . The error decreases significantly after performing the time-consuming iteration process 
(4.10) – the HO solution (4.11) stabilises after the 6 smoothing iterations. This problem did not cause 

such trouble in the 1D tasks, due to the lower number of boundary derivatives (', '', ,III IVw w w w ). 

Here, in 2D tasks, the HO correction consists of 5+9 derivatives ( ' , ' , '' ,..., IV
x y xx yyyyw w w w ). Their 

accuracy has significant influence on the final solution. Their values, evaluated by using the low order 
solution only, display large imprecision. Therefore, various additional extensions of the basic MWLS 
approximation may be performed on the boundary. The best results were obtained when using 
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generalised degrees of freedom, in the form of the right hand side values of the differential equation 
(3.55), namely the Laplace operator values, evaluated at the boundary nodes. 
 
At every boundary node, beside the standard nodal values, additional degrees of freedom were added, 
namely the values of the right hand side function, that is the Laplace differential operator in this case. 
Comparison of the true solution error comparison and HO solution convergence (4.11) are presented 
in Fig.4.23 and Fig.4.24, respectively. In Fig.4.24, shown is the comparison of iteration process 
convergence (4.10), using standard boundary MFD operators (dashed lines), and improved ones, with 
generalised degrees of freedom taken into account (solid lines). The solution error (4.11) was 
evaluated using two norms, namely maximum (triangles) and mean Euclidean one (circles). As it may 
be observed for MFD schemes with generalised d.o.f., significant improvement appears from the 
beginning, after applying those schemes on the boundary. 
 
The largest solution improvement is observed after the first HO iteration, with the primary use of the 
HO correction terms, which values are evaluated with much better precision now. The further iteration 
steps do not exhibit such significant influence on the HO solution quality. This approach, using the 
MWLS approximation with the generalised degrees of freedom on the boundary, is consequently 
applied in the following Chapters in 2D tests. 
 
 

L Tw w−

( )H Tw w

rough

−

a

b

c

( )H Tw w

smoothed

−

310−

310− 510−

 
Fig.4. 22: Comparison of  MFD solutions quality, using standard MWLS approx. - 2D 

benchmark no.1 
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Fig.4. 23: Comparison of  MFD solutions quality, using generalised d.o.f. - 2D benchmark no.1 
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Fig.4. 24: Comparison of the HO solution convergence for two boundary techniques (iterative 
process vs. use of generalised d.o.f.)  - 2D benchmark no.1 
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4.7 Summary 
 

In present Chapter, attention was laid upon the effective discretization of boundary conditions. 
As it was shown in the numerous examples, discretization of boundary conditions has an essential 
influence on the quality of the final MFD solution. Examined were various boundary techniques, 
based on the Higher Order approximation provided by correction terms. Those correction terms, 
originated from the Taylor series expansion of the unknown function at the boundary nodes, consist of 
higher order derivatives values. 

Many approaches were proposed and tested in order to evaluate those derivatives in the most 
accurate way. For the local formulation of the boundary value problem, one may use singular weight 
functions in the MWLS approximation for imposing the essential b.c., as well as HO approximation, 
combined with other techniques, for imposing the natural b.c. Among them, the most promising were 

 
(i) use of all available boundary information, like boundary condition and/or domain 

equation specified on the boundary (local formulation of b.v.problems) , 
(ii) use of the MWLS approximation with the generalised degrees of freedom, here applied 

for simple 2D Poisson’s problem. 
 

In the case of one of the global formulations (variational principle or functional minimisation), 
the essential boundary conditions may be imposed by using singular weight functions, and 
additionally, the boundary conditions enforced in the local approximation. Natural boundary 
conditions may be introduced into the variational principle of energy functional and imposed in the 
same way, as for the local formulation. 
 

Solution approaches on the boundary, including the HO approximation technique, provided by 
correction terms, may significantly improve the MFD approximation on the boundary, and in its 
closest neighbourhood. A variety of 1D and 2D tests, executed on regular and irregular meshes, 
allowed for specifying the most effective approaches, which are consequently applied in further 
calculations. 
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5. A’posteriori error estimation 
 

5.1 On error estimation in the MFDM 
 

One of the most important problems in the contemporary numerical solution approach is error 
analysis including effective error estimation [2, 7, 12, 14, 17, 18, 40, 75, 89, 91, 92, 96, 120]. There 
are two general approaches in discrete methods designed for estimation of  the solution error. The first 
one, a’priori estimation [2, 17, 109], is usually applied after the discretization (determination of the 
cloud of n nodes, mesh topology, approximation order p, boundary conditions, etc) before the whole 
solution process starts. It allows for estimation of the solution error, and for examination of its 
convergence rate. It is done by using only mesh modulus h, and approximation order  p,  as well as 
basic mathematical foundations. Though it might be very effective, in the MFDM it is practically 
applied to regular meshes, and to simple linear differential operators. Advantage may be taken then 
e.g. of the symmetry of the MFD operators. This is why theoretical proofs of stability and consistency 
of the FD solution refer generally to the classical version of the FDM, based on regular meshes.  

Therefore, in the present work, considered is different, more practical, and more effective error 
estimation approach, called a’posteriori one [2, 12, 18, 40, 75, 89, 91, 92, 96]. Opposite to the a’priori 
error estimation, it is performed after the numerical solution is obtained. Nowadays a’posteriori error 
analysis, precise enough, and effective error estimation are one of the most important tasks in the 
discrete analysis. In the MFDM mesh refinement is based on estimation of the a’posteriori residual 
error, while the solution convergence is based on estimation of the a’posteriori solution error.  In the 
most common cases, solution error estimation needs a reference solution that may be used instead of 
the true analytical solution, known only for a small group of benchmark problems. Thus a high quality 
numerical solution has to be found in order to estimate the basic solution error in the most accurate 
manner. 

 

( ),i iP e( ),i ieΩ

( ),i iP e

( ),i ieΩ
 

Fig.5. 1: Local (at point  
iP ) and global  (over the subdomain  

iΩ ) error estimation 

 
Various criteria of choosing the reference solution of the both local and global nature are 

considered in the present Chapter. They may be briefly classified, as follows 
 

• Local estimation (at any required point) of the solution and residual errors 
• Global estimation (over a chosen subdomain) of the solution and residual errors. The 

following esitmation types may be mentioned here: 
o Hierarchic estimators, based on the solutions obtained with the finer 

discretization, 
o Smoothing estimators, based on the solution derivatives smoothing, 
o Residual estimators, based on the residual error distribution (explicit or implicit 

type) 
o Interpolation estimators, based on the interpolation theories. 
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The local estimation of the solution and residual errors, at any required point of the domain or 
its boundary, is typical for the MFDM, especially when the local formulation of the boundary value 
problem is considered. However, the global criteria applied so far in the FEM, but expressed in terms 
of the MFDM also might be used here. A general review of such a’posteriori error criteria may be 
found e.g. in [2, 12, 18, 40, 120]. The most commonly used in the FEM are the global error estimators  
e , expressed in the form of the integral over the whole domain or over a selected finite element. In 

the MFDM this approach may be transferred to e.g. the Voronoi polygons 
iΩ  or the Delaunay 

triangles (Fig.5.1). The global estimators give information whether the specified element (or whole 
mesh) needs refinement or raising the approximation order. In this Chapter, a modification and 
adaptation for the MFDM of the most commonly used global estimators is proposed. Its main idea is 
to use the Higher Order MFDM solution and/or its derivatives as a reference, depending on the 
estimator type. Various tests proved that the Higher Order MFDM solution is a much better reference 
solution than anyone used so far in the FEM [2, 12, 18, 40, 120]. Some of them are presented in this 
Chapter. Further work will be concentrated on coupling of the Higher Order approach with several 
other discrete methods (meshless, FEM, Boundary Element Method BEM), in order to use the very 
high quality MFD reference solution for a high quality error estimation. 

It is worth mentioning that beside the global estimators, in the FEM often are used selective, 
goal – oriented estimators [12], giving the error information of a specified quantity. Moreover, some 
estimation approaches additionally take into the consideration the locally determined pollution error, 
caused by imprecision at other distant points, that can not be negligible, especially for the problems 
with discontinuities and/or singularities. However, those problems will not be considered in the 
present work. 
 

5.2 Local error estimation 
 

Error estimation in the MFDM is usually performed at the specified points, rather than in the 
form of the integral over a chosen subdomain. One may obtain the measurement of the appropriate 
error type, and its estimation, by means of the MFD representation at any required point of the 
domain, and on its boundary. However, this approach is usually limited to the set of points in specially 
chosen locations. These points are usually located somewhere between the nodes, where the error 
values is expected to be the largest. In the simplest cases, these may be e.g. points situated  between 
neighbouring nodes in 1D or centres of gravity of the Delaunay triangles in 2D. Therefore, it is 
especially convenient to use features of Liszka’s type mesh generator, based on a mesh density control 
[51, 53 ÷ 54, 75], already discused in a more detailed way in Chapter 2. A set of adaptive irregular 
meshes is generated then as long as the adimissible level of solution and/or residual errors is reached. 
Nodes of those meshes may be inserted by using estimation of the solution and/or residual error. This 
error is checked then at points belonging to the mesh one level denser only, or one level coarser, if 
necessary.  

 
The following solution strategy is proposed, based on the error estimation 
 

(i) solve the boundary value problem in the considered formulation, obtain discrete MFD 
nodal solutions (low order and Higher Order one) 

(ii) find appropriate error values at specified points of the domain, by means of approximation 
of the nodal solution (Fig.5.2). These may be 

 
a. points belonging to the one level denser mesh, or one level coarser one, when the adaptive 

solution approach, and the Liszka mesh generator are applied, 
b. Gauss points, when the global error is required and numerical integration is involved. 
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Fig.5. 2: Approximated solution built on discrete values 

 
5.2.1 Local estimation of the solution error 

 
  For regular meshes some a’priori estimations can be made using mesh modulus h and the 
local approximation orders,  p for the low order solution and s p+ for the Higher Order one.  One 
may expect then estimations of the following order 
 

( ) ( ) 1
1

( ) ( ) 1
2

( ) ( ) 1

L T p k

L H p k

H T p s k

u u C h

u u C h

u u Ch

+ −

+ −

+ + −

− ≤

− ≤

− ≤

                                  (5.1) 

 
In formulas (5.1), s is the approximation order improvement (0 s p< ≤ ), provided by correction 
terms, and  k  is the highest order of the differential operator. Moreover here, and in the following 

formulas,  ( )Lu   denotes the basic low order MFD solution, ( )Hu  - a Higher Order MFD solution, and 
( )Tu  - true analytical solution, known for benchmark problems. 

 
  Formulas (5.1) do suggest high quality of the HO MFDM solutions due to approximation 
order (s p+ ), higher than the one provided by the other solution techniques. A’posteriori error 
estimation will be discussed for the arbitrarily irregularly distributed cloud of nodes, and for any type 
formulation of the boundary value problem, based on MFD solutions. 
When a numerical solution is obtained at the mesh nodes by solving the appropriate SAE, and the 
exact analytical solution is known, like in benchmark problems, one may approximate discrete MFD 
solutions at any required point iP  in the domain, by means of the MWLS technique. One may 

examine then the true solution errors 
 

( ) ( ) ( )LT L T
e u u= −                                                                             (5.2) 

( ) ( ) ( )HT H T
e u u= −                                                                       (5.3) 
 
The exact low order solution error  (5.2) may be estimated as follows 
 

( ) ( ) ( ) ( )LT LH L H
e e u u≈ = −                                                             (5.4) 



 97 

 

where the true solution ( )Tu  is replaced by the Higher Order one ( )Hu . 
 

5.2.2 Local residual error 
 
  Let u  denotes an approximate smoothed solution based on the nodal function values. The 
true residual error is defined then as  
 

( )Tr u f= −L                                                                          (5.5) 
 
In equation (5.5) uL  denotes exact differentiation of the continuos solution u , based on the nodal 
values obtained from the SAE (Fig.5.3).   
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( ) ( ) ( ) ( )Tr x u x f x= −L

 
Fig.5. 3: Concept of the true residual error 

 
  In the MFDM uL  is obtained by expansion of an unknown function u  into the Taylor series 
at any arbitrary point iP   in the domain, and use of the MWLS approximation. The residual error may 

be presented in one of the following forms: 
 

( ) ( )L L
i i ir Lu f= −    low order estimation                                                     (5.6) 
( ) ( ) ( )H H H

i i i ir Lu f= + ∆ −   higher order estimation                                                 (5.7) 
( ) ( ) ( )T H H

i i i i ir Lu R f= + ∆ + −   true residual error                                                          (5.8) 

 
dependent on the approximation order required. Here iLu  denotes a basic low order MFD operator, 

( )H
i∆ - HO correction term considered, and iR - neglected truncation error. It is worth stressing that 

improved, HO residuum form (5.7) involves only the truncation error of the Taylor series, while the 
low order one (5.6) is influenced by both the quality of the MFD operator itself, and the truncation of 
the Taylor series.  
  Inside the domain, one may evaluate higher order derivatives, which appear in the correction 

terms ( )H
i∆ , by the formulae composition. The boundary region may require special treatment e.g. 

expansion of the higher order derivatives at boundary nodes into the Taylor series, with the respect to 
the closest internal nodes. The appropriate techniques have been discussed, in a more detailed way, in 
the previous Chapter.  
  The question arises, where the residuals (5.7) – (5.8) may be evaluated. In the case of the local 
formulation of boundary value problems, these residual errors vanish at nodes where collocation was 
imposed. One may expect that in 1D problems the largest residual error appears close to the mid-
points between neighbouring nodes, while in 2D problems, the largest amount may be found close to 
the centre of gravity of the Delaunay triangles, generated on any arbitrarily irregular cloud of nodes. 
However, this assumption does not always hold. Typical situations present boundary zones, where the 



 98 

MWLS approximation has less accuracy than inside the domain. Moreover, residual error may have 
zero value at the so called super-convergence points [32, 82, 83, 118].  
  Exemplary situation is presented in Fig.5.4. Irregular mesh is considered here. It is generated 
for the 1D benchmark no.2 (see previous Chapter for more details). Calculated were HO residuals 
(5.8) at points belonging to very fine background mesh (thin red line). The thick red line links the real 
maximum values of (5.8) between the nodes, whereas the dashed blue one links values calculated 
between every pair of neighbouring nodes. In some zones a significant differences may be observed 
between those two approaches, although the basic trend remains the same. The blue line seems to be 
smoother, and it is much easier to be determinate than the red one. 
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Fig.5. 4: Example of residual calculations between the nodes in 1D - benchmark no.2 

 
  As mentioned above, the most consistent manner of choosing residual points is to apply 
consequently the Liszka type mesh generator features, which uses one level denser (and one level less 
dense as well) meshes. In this way the potential locations of new nodes (or nodes which might be 
removed) are determined [75]. This problem will be discussed in more detailed way in the following 
Chapter. 
  It is worth stressing that the above local residual errors do not need to use any reference 
solution based on a’posteriori solution smoothing, like it is in the FEM. In formulas (5.7) and (5.8), 
smoothing is built into the MFD operator generation procedure by means of the MWLS 
approximation used. 
 

5.3 Global error estimation 
 
 The MFDM global error analysis was worked out within the approach earlier developed [1, 
82, 83, 101, 102] for the FEM. The FEM most commonly uses global integral estimators η  of the 
solution error using a variational principle. In the case of Galerkin formulation, one has 
 

( , ) ( )

( , ) , ( )

u v v

u v u d v f d v g d
Ω Ω ∂Ω

=

= ⋅ Ω = ⋅ Ω + ⋅ ∂Ω∫ ∫ ∫

B L

B L
u v
L L v v

       (5.9) 

 

Solution of (5.9), due to Cea lemma, is the optimal approximation of ( )Tu x , when the bilinear form 

( , )u vB  is continuos and coercive, and the linear form ( )vL  is continuos. Error estimation of this 
solution  u  may be performed in several different ways. The classification is made due to the choice of 
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reference solution ( )Tu u x≈ . Such chocie determines the type of the global error estimator. Some of 
the most commonly applied error estimators are the following: 
 

(i) hierarchic estimators, with the reference solution provided by the a discretization 

a. h – type, (with mesh refined from  h  to 
2

h
), 

b. p – type, (with approximation order raised from  p  to 1p + ), 

c. HO – type, (developed in this thesis, with approximation order raised from  p  to 2p ), 
 

(ii) smoothing estimators, based on the smoothing of the derivatives of the solution, 
 

a. Zienkieiwcz – Zhue (ZZ) - type, (based on rough and smoothed derivatives of the 
solution), 

b. HO – type, (developed here, based on derivatives of the solution, with the HO 
correction), 

 
(iii) residual estimators, based on the true residual error 
 

a. explicit type, 
b. implicit type, 
 

(iv) interpolating estimators, based on the interpolation theory, and not considered here. 
 

5.3.1 Hierarchic estimators 
 

The global solution hierarchic estimators are based on the local distribution of the solution error  
 

( ) ( ) ( ) ( )e x e x u x u x≈ = −                               (5.10) 
 
where ( )u x  denotes a reference solution and ( )u x  - the rough one found by the MFDM analysis. 

Thus the main task is to find a good quality reference solution ( )u x . The global error estimator 
 

( , )h E
e e eη = = B                                (5.11) 

 
is calculated either on the level of the whole domain or on the chosen subdomain (finite element in the 
FEM, Voronoi polygon or Delaunay triangle in the MFDM) using energy norm defined by a Galerkin 
type variational form. Reference solution  ( )u x  may be calculated in several ways. The most common 

used in the FEM are h- and p- hierarchic. They use solutions ( )u x  either with number of nodes  of 

doubled density ( )2
hh →  or with the increased approximation order ( )1p p→ +  respectively, 

where h and p denote local mesh modulus and approximation order of the estimated solution ( )u x . 
However, both approaches are very time consuming ones, because they require each time  analysis of  
a new discrete model of the considered boundary value problem. They are mainly used to proof the 
independence of the solution from the mesh. Together with additional procedures, based on some 
mathematical foundations, they allow to perform the adaptation process (h, p, hp) [14]. 

The HO MFDM solution may be successfully applied in the estimators of hierarchic type 
developed for the FEM. In that case 

 
( ) ( ),L Hu u u u= =                                                                      (5.12) 
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This means that approximation order may be significantly raised (from p to 2p), without necessity of 
analysis of two completely different discretizations of the boundary value problem considered. 
It is worth stressing that a high quality reference solution may be also found by means of solution 
smoothing [40]. The MWLS approximation, which may be applied for this purpose, may use either the 
non-singular weight functions or generalised degrees of freedom, which allows for raising the local 
approximation order, usually from 1p p→ + . 
 

5.3.2 Smoothing estimators 
 

Local distribution of the solution error (5.10), needed for integral error estimation (5.11), may 
be expressed in terms of various error relations. One of them is based on the difference between a 
smoothed σ  and the rough (basic) σ  derivatives of the rough solution ( )u x . Such is e.g. the well-
known Zienkiewicz-Zhue error estimator [119, 120], based on the difference of derivatives 
 

( ) ( ) ( ) ( )e x e x x xσ σ σ≈ = −                                (5.13) 
 
The main concept of dealing with the smoothed derivative is illustrated in Fig.5.5. 
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Fig.5. 5: Concept of the smoothing estimator 

 
Higher order terms may be used here to estimate values of the first derivative of  u 

 

( ) ( )( ) ( )
'

H LI Ie u u= −                                                         (5.14) 
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In the case of smoothing estimators [120], the Euclidean integral norm  L2  is applied 
 

( )
2

21
s L

e e dη
Ω

= = Ω
Ω ∫

                                           (5.15) 

 
It has to be noticed here that this commonly used estimator is very easy in application, and usually 
yields very good results, despite lack of the rigorous mathematical proof.  
 

5.3.3 Residual estimators 
 

The last commonly used type of global estimators mentioned here, is the residual one, of 
explicit or implicit character [14]. Residual estimators are based on the true residual error (5.5). 
However, in the MFDM, one of the approximate finite representations (5.6) ÷ (5.8) is used. The 
explicit residual estimator 

 

21
r r dη

Ω

= Ω
Ω ∫

                               (5.16) 

 
uses the residual error (5.5) as a measure of the true solution error. Formula (5.16) may be additionally 
extended as to include jump terms in function itself and/or in its derivatives.  

The residual error of implicit type needs additional solution of the original boundary value 
problem (5.9). However, with the modified right hand side 
 

( , )e e r=B                                 (5.17) 
 
The error estimator rη  is defined here in the same way as in (5.11). 

 
Quality of the global estimators may be controlled by the effectivity index  i, e.g. defined [12] as 

 

1 ,
e

i e
e

η
η

−
= + =                                  (5.18) 

 

and tested on chosen benchmark problems. e   denotes here the error estimator, defined as in (5.11), 

(515) or (5.16). It is said that estimator is asymptotically equivalent to error, if  
0

lim 1
h e

η
→

= .  

Hierarchic, smoothing, residual and interpolating (not discussed here) estimators belong to the 
group of the global energy estimators. They give information about quality of the solution treated as a 
whole. The other concept is presented by the goal-oriented estimators which give estimation of 
selected, local or integral, values. 

The main task of the estimators, both local and global kind, is to provide information about the 
solution quality and approximation. In particular calculations, they may be used for mesh refinement in 
the adaptive solution approach. 
 

5.4 Numerical examples 
 

Local and global estimation of both solution and residual error will be illustrated using 1D and 
2D benchmark examples introduced in Chapter 3. Estimations will be compared with the exact errors 
both locally (evaluation point-by-point), as well as by means of an appropriate integral norms. The 
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main idea of those numerical examples is to present a new, original very high quality reference 

solution ( )Hu , obtained from the Higher Order correction MFDM approach.  
 
Among many problems tested here, the most investigated were 
 

(i) application of the approach using higher order terms, to the local solution error and 
residual error estimation,  

(ii) application of  the approach using higher order terms to estimation of the global solution 
and residual errors, 

(iii) comparison of  the error estimation between regular and irregular meshes, 
(iv) comparison of  the error estimation between different formulations of the boundary value 

problems, 
(v) examination of error estimation on a set of regular meshes. 

 
5.4.1 1D benchmark problems 

 
1D boundary value problem will be considered in three formulations: local (3.31), variational 

non-symmetric (3.35) and variational symmetric (3.36). For benchmark no.1 (3.32), regular mesh with 
5 nodes was applied. In the left column (Fig.5.6), the exact solution error (red solid line) (5.2), and its 
HO estimation (blue dashed line) (5.3) are presented. 
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Fig.5. 6: Local true errors and their estimation, regular mesh with 5 nodes, 1D benchmark no.1 

 
It is worth stressing that, for all three formulations, the exact estimation was obtained, after 

using the improved HO approximation.  
The right column of Fig.(5.6) is devoted to the exact residual error, given by the formula (5.8) 

- green solid line, and its MFD estimations: low order (5.7, red dotted line) and HO (5.8, blue dashed 
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line). The HO residual is the same as the exact one, with zero values, in that case. For better 
comparison, the mean and maximum values of appropriate errors are presented in Tab.5.1. 

 
 

 local formulation 
variational non-

symmetric formulation 
variational symmetric 

formulation 
 mean max mean max mean max 

exact solution 
error LTe  

3.38e+000 5.12e+000 3.34e+001 4.79e+001 1.77e+000 2.83e+000 

error 
estimation LHe  

3.38e+000 5.12e+000 3.34e+001 4.79e+001 1.77e+000 2.83e+000 

true residual 
error Tr  

0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000 

low order 
estimation Lr  

2.05e+001 3.98e+001 2.38e+001 3.66e+001 2.14e+001 3.96e+001 

higher order 
estimation Hr  

0.00e+000 0.00e+000 8.31e-002 1.01e-001 0.00e+000 0.00e+000 

Tab.5. 1: The exact errors and their estimations - 1D benchmark no.1, regular mesh 

 
 

 local formulation 
variational non-

symmetric formulation 
variational symmetric 

formulation 
 mean max mean max mean max 

exact solution 
error LTe  

8.33e-004 1.20e-003 7.38e-003 1.04e-002 2.58e-005 3.85e-005 

error estimation 
LHe  

8.34e-004 1.20e-003 7.39e-003 1.04e-002 2.58e-005 3.84e-005 

true residual 
error Tr  

1.23e-005 4.90e-005 1.23e-005 4.90e-005 1.23e-005 4.90e-005 

low order 
estimation Lr  

7.72e-003 3.07e-002 2.14e-002 4.22e-002 8.64e-003 3.47e-002 

higher order 
estimation Hr  

8.19e-005 3.45e-004 1.29e-004 4.32e-004 4.27e-005 1.55e-004 

Tab.5. 2: The exact errors and their estimations - 1D benchmark no.2, regular mesh 

 
For other 1D benchmarks, namely no.2 (3.33) and no.3 (3.34), regular mesh with 33 nodes 

was applied at first. Results of the benchmark no.2  for all three formulations are presented in Fig.5.7 
whereas the results of benchmark no.3 are presented in Fig.5.8. Additionally, the mean and maximum 
error values are collected in the Tab.5.2 and Tab.5.3, for benchmark no.2 and no.3, respectively. 
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Fig.5. 7: Local true errors and their estimation, regular mesh with 33 nodes, 1D benchmark no.2 

 

 local formulation 
variational non-

symmetric formulation 
variational symmetric 

formulation 
 mean max mean max mean Max 

exact solution 
error LTe  

7.76e-003 2.31e-002 5.79e-002 1.44e-001 1.35e-003 3.29e-003 

error estimation 
LHe  

7.53e-003 2.00e-002 6.05e-002 1.51e-001 1.28e-003 3.13e-003 

true residual 
error Tr  

3.72e-002 9.22e-002 3.72e-002 9.22e-002 3.72e-002 9.22e-002 

low order 
estimation Lr  

1.69e-001 6.30e-001 1.12e+000 2.70e+000 3.73e-001 9.96e-001 

higher order 
estimation Hr  

2.25e-001 1.24e+000 1.64e-001 6.57e-001 1.40e-001 6.73e-001 

Tab.5. 3: The exact errors and their estimations - 1D benchmark no.3, regular mesh 
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Fig.5. 8: Local true errors and their estimation, regular mesh with 33 nodes, 1D benchmark no.3 

 
Higher Order estimations of solution error (left columns) and residual error (right column) are very 
close to the exact errors each time. The smallest errors are obtained for the variational symmetric 
(Galerkin) form, the largest – for the first variational non-symmetric one. 
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Fig.5. 9: Regular (33 nodes) and irregular mesh (34 nodes) - benchmark no.3 

 
Additionally, for benchmark no.3, a strongly irregular mesh will be considered. The distribution of 
nodes was not generated randomly, but using the residual error controlling criteria, introduced and 
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discussed in the following Chapter. This mesh, containing 34 nodes, is presented in Fig.5.9. For better 
comparison, the regular mesh with 33 nodes is presented as well. 
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Fig.5. 10: Local true errors and their estimation, irregular mesh with 34 nodes, 1D benchmark 

no.3 

 

 local formulation 
variational non-

symmetric formulation 
variational symmetric 

formulation 
 mean max mean max mean max 

exact solution 
error LTe  

6.98e-004 2.15e-003 6.98e-004 2.15e-003 6.98e-004 2.15e-003 

error estimation 
LHe  

6.84e-004 2.24e-003 6.84e-004 2.24e-003 6.84e-004 2.24e-003 

true residual 
error Tr  

9.43e-003 2.54e-002 9.43e-003 2.54e-002 9.43e-003 2.54e-002 

low order 
estimation Lr  

1.69e-001 4.75e-001 1.69e-001 4.75e-001 1.69e-001 4.75e-001 

higher order 
estimation Hr  

1.17e-002 3.65e-002 1.17e-002 3.65e-002 1.17e-002 3.65e-002 

Tab.5. 4: The exact errors and their estimations - 1D benchmark no.3, irregular mesh 

 
Analysis of the results obtained for that mesh, presented in Fig.5.10 and in Tab.5.4, shows that 

even for a mesh with strong irregularity, the local estimation is of very good quality. The most 
significant differences between the exact errors and their estimations appear in the case of variational 
non-symmetric formulations, which exhibits the largest errors. The next step will be adopting the 
Higher Order solution as the reference solution for the global estimators. 



 107 

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1
CONVERGENCE: REGULAR MESHES (n = 5 - 25)

log10(h)

log10(e)

LOCAL, aL = 1.7932
LOCAL, aH = 1.8786 (Imp = 1.0476)
VAR NON-SYM, aL = 0.97192
VAR NON-SYM, aH = 1.0248 (Imp = 1.0545)
VAR SYM, aL = 2.6594
VAR SYM, aH = 2.6839 (Imp = 1.0092)

LTa =
LHa =

LTa =
LHa =

LTa =
LHa =

10

10

log ( )

log ( )

LT

LH

e

e

 
Fig.5. 11:  True solution error and its estimation on the set of regular meshes - 1D benchmark 

no.2 
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Fig.5. 12: True solution error and its estimation on the set of regular meshes - 1D benchmark 

no.3 

 
Finally, the set of, more and more dense, regular meshes was considered. Compared was, separately 
for benchmark no.2 (Fig.5.11) and benchmark no.3 (Fig.5.12), convergence of the mean value of the 

true solution error LTe  and its estimation LHe  for all three formulations. Convergence rates, LTa  

and LHa , were calculated, using the linear approximation, and are shown nearby the graph legend, 
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together with the estimation quality quotient  Imp
H

L

a

a
= . The closer this quotient to “1” appears, the 

better estimation is. 
 Comparison between the residual error convergence and its estimations will be presented in 
the following Chapter. 
 

In the case of the global estimators, estimated was the low order solution ( )Lu . Several types of those 
estimators were investigated 

(i) hierarchic of h-type   

2
4

( ) ( )
, ,

,
20

1
I

L L
H h h h p i

p
i

u u dη
  
 = − Ω Ω    
∫ ,   (5.19) 

(ii) hierarchic of p-type   ( )
4 2

( ) ( )
. , 1 ,

0

1 IL L
H p h p h p i

i

u u dη +
 = − Ω  Ω ∫ ,               (5.20) 

(iii) hierarchic of HO type   ( )
4 2

( ) ( )
, , ,

0

1 IH L
H HO h p h p i

i

u u dη  = − Ω  Ω ∫ ,               (5.21) 

(iv) smoothing, ZZ-type   ( )
4

2( ) ( )
,

0

1
' 'L L

S ZZ i
i

u u dη = − Ω
Ω ∫ ,    (5.22) 

(v) smoothing, HO-type   ( )
4

2( ) ( )
,

0

1
' 'H L

S HO i
i

u u dη = − Ω
Ω ∫ ,    (5.23) 

(vi) residual explicit   
4

2
,

0

1
RES EXP i

i

r dη = Ω
Ω ∫ ,     (5.24) 

(vii) residual implicit  
 

( ) ( )
4 2

( ) ( ) ( ) ( )
,

0

( ) ( )

1
,

IL L L L
RES IMP i

i

L L

u u d u u r

u u

η  = − Ω − = →  Ω

→ −

∫ L
.  (5.25) 

 
All of those estimators are defined on the local subdomain iΩ . In 1D benchmarks, it is treated as the 

interval between two neighbouring nodes, 1 , 1,2,..., 1i i ix x i n+Ω = − = − , while in 2D problems, 

iΩ  may represent Delaunay triangle or Voronoi polygon. Therefore, any local subdomain iΩ  has its 

own integral representation iη . Moreover, integrals (i) – (vii) may be taken over the whole problem 

domain. They represent the whole mesh then, giving one representative global error estimated value.  
 

Quality of the estimator was examined each time using the effectivity index (5.18). Results for 
the benchmark no.2 are presented in Fig.5.13 – Fig.5.16. In the left graph, a global estimation is 
presented (blue dashed line with triangles), together with the exact one (red solid line with circles). 
The mid-points represent the neighbouring nodes interval. The collection of points does not mean the 
local error this time, but the integral representation of the nodes intervals. In the right graph, the 
distribution of the effectivity index for each interval (5.18) is presented. The larger value of the index  
i  appears, the worse error estimation is.  
 Estimators are collected in specified order, from the one giving the best results, in the sense of 
the effectivity index value. The very first one is devoted to the exact estimation – that is why the 
effectivity index value is one. Additionally, values of estimators and indices over the whole domain 
are presented on the left side of the graphs and are separately collected in Tab.5.5. 
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Fig.5. 13: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.2 
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Fig.5. 14: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.2 – cont. 
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Fig.5. 15: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.2 – cont. 
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Fig.5. 16: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.2 – cont. 

 
 

 



 111 

Benchmark no.2 – regular mesh, 33 nodes Global estimator type 
global estimation effectivity index 

exact estimation 1.34e-3 1.000 
(iii) hierarchic, HO – type 1.34e-3 1.000 
(v) smoothing, HO – type 1.33e-3 1.008 

(vii) residual implicit 1.36e-3 1.013 
(iv) smoothing, ZZ – type 1.57e-3 1.174 
(i) hierarchic, h – type 1.00e-3 1.252 
(ii) hierarchic, p – type 4.25e-4 1.683 

(vi) residual explicit 3.53e-4 1.737 

Tab.5. 5: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.2 

 
One may easily observe (Fig.5.13) – (Fig.5.16) that the estimators using HO solution as the reference, 
yields much better results than the other hierarchic estimators. Moreover, smoothing of HO derivatives 
provides better estimation than the standard ZZ estimator. 
 

The above conclusions are additionally supported by examination of the benchmark no.3. 
Results for the global estimation of the LO solution on the regular mesh with 33 nodes are presented in 
Fig.5.17 ÷ 20 and in Tab.5.6. 
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Fig.5. 17: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.3 

 



 112 

0 1 2 3 4
0

0.01

0.02

0.03

0.04
RES IMP: TRUE ERROR vs. ESTIMATION

E
TRUE

 = 7.27e-2

EEST = 7.5e-2

RES IMP

EFFEST = 1.032

x

eTRUE, eEST

True error
Estimation

0 1 2 3 4
1

1.5

2

2.5

3
RES IMP: EFFECTIVITY OF ESTIMATION

x

Ist

Effectivity

0 1 2 3 4
0

0.01

0.02

0.03

0.04
SMOOTH HO: TRUE ERROR vs. ESTIMATION

ETRUE = 7.27e-2

EEST = 6.87e-2

SMOOTH HO

EFFEST = 1.055

x

eTRUE, eEST

True error
Estimation

0 1 2 3 4
1

1.5

2

2.5

3
SMOOTH HO: EFFECTIVITY OF ESTIMATION

x

Ist

Effectivity

 
Fig.5. 18: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.3 – cont. 
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Fig.5. 19: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.3 – cont. 
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Fig.5. 20: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.3 – cont. 

 
 

Benchmark no.3 – regular mesh, 33 nodes Global estimator type 
global estimation effectivity index 

exact estimation 7.27e-2 1 
(iii) hierarchic, HO – type 7.16e-2 1.014 

(vii) residual implicit 7.50e-2 1.032 
(v) smoothing, HO – type 6.87e-2 1.055 
(iv) smoothing, ZZ – type 8.06e-2 1.109 
(i) hierarchic, h – type 5.49e-2 1.244 
(vi) residual explicit 5.30e-2 1.270 

(ii) hierarchic, p – type 2.06e-2 1.717 

Tab.5. 5: Global error estimation, regular mesh with 33 nodes, 1D benchmark no.3 

 
Afterwords, irregular mesh with 34 nodes (Fig.5.9) was analysed. Results are presented in 

Fig.5.21 – 24 and in Tab.5.7. 
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Fig.5. 21: Global error estimation, irregular mesh with 34 nodes, 1D benchmark no.3 
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Fig.5. 22: Global error estimation, irregular mesh with 34 nodes, 1D benchmark no.3 - cont. 
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Fig.5. 23: Global error estimation, irregular mesh with 34 nodes, 1D benchmark no.3 - cont. 
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Fig.5. 24: Global error estimation, irregular mesh with 34 nodes, 1D benchmark no.3 - cont. 
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Benchmark no.3 – irregular mesh, 34 nodes Global estimator type 
global estimation effectivity index 

exact estimation 3.80e-2 1.000 
(iii) hierarchic, HO – type 3.71e-2 1.024 
(iv) smoothing, ZZ – type 3.35e-2 1.120 

(vii) residual implicit 4.33e-2 1.140 
(v) smoothing, HO – type 3.24e-2 1.148 
(i) hierarchic, h – type 2.89e-2 1.239 
(vi) residual explicit 4.78e-2 1.257 

(ii) hierarchic, p – type 8.07e-2 2.125 

Tab.5. 6: Global error estimation, irregular mesh with 34 nodes, 1D benchmark no.3 

 
Finally, set of regular meshes was considered. On each mesh, evaluated were global 

estimations of the solution error, using seven error estimators. Results are presented in Fig.5.25 (for 

benchmark no.2) and Fig.5.26 (for benchmark no.3). The exact solution error e  on te subsequent 

meshes, is marked with dots. The best error estimators are those who are close to the exact one.  
Convergence rates were evaluated using linear approximation and shown nearby the graph legend. 
They may be considered as one of the possible indicators for estimation quality. 
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Fig.5. 25: Global error estimations on the set of regular meshes - 1D benchmark no.2 

 
5.4.2 2D benchmark problems 

 
The 2D benchmark value problem will be analysed using the MFDM solution approach, posed 

in two different formulations, namely local (3.55) and variational symmetric one (3.59). Two exact 
solutions were examined, no.1 (3.56) and no.2 (3.57). Regular mesh with 64 nodes was introduced 
(Fig.5.28). First, the local estimation of the solution and residual error was examined. The results for 
benchmark no.1, posed in the local formulation are presented in Fig.5.27 (estimation of solution error) 
and Fig.5.28 (estimation of residual error). Fig.5.29 and Fig.5.30 are devoted to the vatiational 
symmetric formulation of the benchmark no.1, followed by the results of the benchmark no.2 
(Fig.5.31 and Fig.5.32).  
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By comparison of the local distribution of the solution and residual errors as well as the their 
mean and maximum values, one may observe that Higher Order solution is a very good substitute of 
the exact analytical solution. By analysing the residuals, one may come into the conclusion that even 
between the nodes the residual estimation is of very high quality.  
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Fig.5. 26: Global error estimations on the set of regular meshes - 1D benchmark no.3 
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Fig.5. 27: Local estimation of solution error of local b.v.p. formulation, regular mesh with 33 
nodes, 2D benchmark no.1 
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Fig.5. 28: Local estimation of residual error of local b.v.p. formulation, regular mesh with 33 

nodes, 2D benchmark no.1 
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Fig.5. 29: Local estimation of solution error of variational symmetric b.v.p. formulation, regular 

mesh with 33 nodes, 2D benchmark no.1 
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Fig.5. 30: Local estimation of residual error of variational symmetric b.v.p. formulation, regular 

mesh with 33 nodes, 2D benchmark no.1 
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Fig.5. 31: Local estimation of solution error of local b.v.p. formulation, regular mesh with 33 

nodes, 2D benchmark no.2 
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Fig.5. 32: Local estimation of residual error of  local b.v.p. formulation, regular mesh with 33 

nodes, 2D benchmark no.2 
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Fig.5. 33: Local estimation of solution error of  variational symmetric b.v.p. formulation, regular 

mesh with 33 nodes, 2D benchmark no.2 
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Fig.5. 34: Local estimation of residual error of  variational symmetric b.v.p. formulation, regular 

mesh with 33 nodes, 2D benchmark no.2 

 
2D benchmark no.1 2D benchmark no.2 error norm type 
local  variational local variational 

mean 4.66e-4 2.70e-4 4.36e-2 4.66e-2 true solution 

error LTe  max 9.91e-4 5.86e-4 1.81e-1 2.17e-1 

mean 4.63e-4 2.76e-4 3.82e-2 4.10e-2 LHe  error 

estimation  max 9.88e-4 5.88e-4 1.63e-1 1.82e-1 

mean 1.01 1.02 1.12 1.12 estimation 
quality LTη  max 1.00 1.00 1.10 1.16 

mean 1.38e-3 1.38e-3 3.14 3.14 true residual 

error Tr  max 8.63e-3 8.63e-3 11.68 11.68 

mean 9.67e-2 8.94e-2 4.16 4.66 Lr  

estimation  max 4.60e-1 4.53e-1 15 21.23 

mean 70.1 64.8 1.32 1.48 estimation 
quality Lη  max 53.3 52.5 1.28 1.82 

mean 1.46e-3 1.80e-3 3.27 3.76 Hr  

estimation max 8.84e-3 8.24e-3 14.1 17.43 
mean 1.06 1.30 1.04 1.20 estimation 

quality Hη  max 1.02 1.05 1.21 1.49 

Tab.5. 6: True errors and their estimations - comparison for 2D benchmark tests 
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Additionally, all the mean and maximum error values are collected and presented in  Tab.5.8. Each 
time, the estimation quality was examined using norms  

 

1
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LT LT

e e

e
η

−
= +             (5.26) 

 
for the solution error estimation, as well as   
 

1
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L T

r r

r
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−
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H H

r r

r
η

−
= +        (5.27) 

 
for residual error estimations. 
 

Local estimation is followed by the global one, using 8 integral estimators, introduced above 
(5.18)÷(5.25). Here estimated is the low order solution, obtained from the local formulation, using 
regular mesh with 64 nodes. Results are shown separately for the benchmark no.1 and no.2. Graphs 
show estimators values representing the whole Voronoi polygons. They are collected from the 
estimators giving the smallest values of the effectivity index to estimators of the poorest quality. Thus 
the graph set is always opened by the exact solution error. Results for the benchmark no.1 are gathered 
in Fig.5.35 and Fig.5.36 and in Tab.5.9, whereas the results for the benchmark no.2 are collected in 
Fig.5.37 and Fig.5.38 and in Tab.5.10. 

All graphs have been scaled to their maximum values for better comparison of their shapes. 
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Fig.5. 35: Global error estimation of the low order solution  ( )Lu  of the local b.v.p. formulation, 
regular mesh with 33 nodes, 2D benchmark no.1 
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Fig.5. 36: Global error estimation of the low order solution  ( )Lu  of the local b.v.p. formulation, 
regular mesh with 33 nodes, 2D benchmark no.1 - cont. 
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Fig.5. 37: Global error estimation of the low order solution  ( )Lu  of the local b.v.p. formulation, 
regular mesh with 33 nodes, 2D benchmark no.2 
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Fig.5. 38: Global error estimation of the low order solution  ( )Lu  of the local b.v.p. formulation, 
regular mesh with 33 nodes, 2D benchmark no.2 - cont. 

 
2D benchmark no.2 – regular mesh, 64 nodes Global estimator type 

global estimation effectivity index 
exact estimation 3.17e-1 1 

hierarchic, HO – type 2.8e-1 1.1189 
smoothing, ZZ – type 2.55e-1 1.1966 

residual implicit 2.35e-1 1.2602 
smoothing, HO – type  4.2e-1 1.3244 
hierarchic, h – type 1.64e-1 1.4824 
hierarchic, p – type 1.14e-1 1.6394 

residual explicit 8.34e-2 1.7371 

Tab.5. 7: Global error estimation of the low order solution  ( )Lu  of the local b.v.p. formulation, 
regular mesh with 33 nodes, 2D benchmark no.2 

 
Finally, the global estimation of the low order solution error was examined for a set of denser 

and denser regular meshes. This was done for two benchmarks separately. Convergence results, 
evaluated for those meshes, are presented in Fig.5. 39 (for benchmark no.1) and in Fig.5.40 (for 
benchmark no.2), for all seven error estimators. The convergence rate was calculated for each of them. 
It is shown nearby the graph legend. Each time, the HO hierarchic estimator was the closest to the true 
global solution error. 
 

5.5 Summary 
 

Considered was application of the HO approximation in the MFDM to effective a’posteriori 
error analysis. The HO correction terms may be used not only to improve the solution quality, but also 
to refine, in this way, the estimation of solutions, and residuals. Those estimates may be used in the 
adaptive mesh generation. This is the main problem of the following Chapter. Besides the global error 
estimators discussed here, specially developed (for irregular cloud of nodes) local error indicators will 
be considered, and used to examine the convergence rate of both the solutions and residuals.  
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Moreover, the global criteria, developed for error estimation in the FEM analysis may be 
applied here as well. When including the local HO MFD error estimates, they provide especially high 
quality (2p-th order) estimation for solution and residual errors, when compared with those obtained by 
means of the existing smoothing procedures of the  p+1 order. It is worth stressing here that these 
global error estimates with HO correction terms, though developed for the MFDM analysis, may be 
also effectively used in the other meshless methods or in the FEM. 

Presented was a variety of 1D and 2D benchmark tests. Many aspects were investigated. The 
most interesting was high capability of the HO MFD solution to the a’posteriori solution and residual 
error estimation, for b.v. problems posed in both the local or global formulation.  
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Fig.5. 39:  Global error estimations of the low order solution  ( )Lu  of the local b.v.p. formulation 
on the set of regular meshes - 2D benchmark no.1 
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Fig.5. 40: Global error estimations of the low order solution  ( )Lu  of the local b.v.p. formulation 
on the set of regular meshes - 2D benchmark no.2 
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6. Adaptive solution approach 
 

6.1 Introduction 
 

Every numerical solution may suffer from certain imprecision. For the reliability of the results, 
obtained from the numerical analysis, therefore, proper estimation of the computational errors, as well 
as their minimisation is one of the main challenges in the discrete analysis nowadays [2, 7 ÷ 9, 14, 17, 
40, 51 ÷ 59, 76 ÷ 100] . The process, where accuracy of approximation (mesh density, and/or local 
approximation order) is controlled on the basis of error, is called the adaptive solution approach. Its 
main goal is to obtain required accuracy either in the whole domain or only in the chosen subdomains, 
using possible the smallest number of unknowns (degrees of freedom). The adaptive solution approach 
involves 

• A’posteriori error estimation, 
• Proper adaptation strategy, 
• Effective algorithm for discretization refinement (usually h, p or hp type) and for repeating 

calculations with partial use of the previous results. 
 

In the present Chapter, an adaptation strategy, designed for the MFDM solution approach will 
be proposed, discussed and tested. It is based on the Liszka type mesh generator and on a’posteriori 
error estimation. Adaptation criteria, developed in the FEM but based on the improved HO MFD 
estimation of the residual error, will be applied here. Moreover, several error indicators will be 
proposed, possibly more subtle for irregular meshes, than the criteria mentioned above. They allow for 
effective estimation of the solution, and residual convergence on both the set of regular, and strongly 
irregular, adaptively generated, meshes.  

A variety of 1D and 2D benchmark tests was examined in order to evaluate the quality of the 
adaptive mesh generator. The results obtained for irregular cloud of nodes are compared to the ones 
obtained when using regular meshes. These results clearly show the advantages of using rather the 
adaptive approach, than introducing very fine mesh from the begin of discrete analysis. 
 

6.2 Problem formulation 
 

Many types of adaptation techniques are applied nowadays in the discrete methods. Among them one 
may distinguish 

(i) mesh refinement (h – adaptation approach), which results in inserting and/or removal of 
nodes, 

(ii) nodes relocation (r – adaptation approach), which results in shifting nodes to the zones 
with the largest amount of error, 

(iii) mesh refinement in the chosen subdomains (s – adaptation approach). 
(iv) raising order of the local approximation (p-adaptation approach), 
(v) combination of both (i) and (iv) together (hp – adaptation approach); usually an additional, 

mathematically based strategy for optimal choice of the h and p adaptation parameters [14, 
101, 102] is required then. 

 
The optimal adaptation strategy should be chosen mainly due to the method nature. In the 

FEM [2, 17, 119 - 120], much easier is to raise the interpolation order of the shape functions (p – 
adaptation approach) than to add new nodes. Mesh refinement, applied in the FEM (element 
subdivision), is possible and works effectively although it is much more complex than in the meshless 
methods. Adaptation of h-type results in the FEM in the significant change of the whole element mesh, 
which might be computationally complicated and time consuming for the mesh generator used. 

In the meshless methods, however, one may insert, remove or shift nodes with much ease. 
Adding, removing or shifting nodes involves only small topology changes in the closest 
neighbourhood of the new/old node. Therefore, h – adaptation strategy might be easily used also in the 
MFDM [51, 75, 85, 88, 89, 90, 91, 100, 92, 94, 95, 96]. In the present Chapter, an extension of 
adaptation criteria fromulated in [75], together with some new concepts will be discussed. Higher 
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Order correction terms for MFD operators, among many other applications, may significantly improve 
estimation of the true residual error obtained for MFDM solutions. Such estimation may be applied in 
adaptation using an error based criterion of new nodes (e.g. the Liszka type). Due to high quality of 
the HO MFDM solutions, it is expected to work much more effective than by using the other criteria. 

A variety of 1D and 2D benchmark examples were examined. Each time, the set of strongly 
irregular meshes was generated, by using the improved HO residual error criterion and other 
smoothing techniques. The solution and residual convergence on these meshes were measured using 
several discrete error indicators, that seem to be much more sensitive for the mesh irregularity than 
those integral ones, commonly used in the FEM [2, 119]. 
 

6.3 Adaptive solution approach in the MFDM 
 
Adaptive approach in the MFDM, like in the other discrete methods, is based on error 

analysis, especially the a’posteriori one [2, 12, 17, 18, 40, 43, 75, 89, 91, 92, 96]. Various criteria of 
the both local and global estimation of the solution and residual error were defined, and tested in the 
previous Chapter. They all may be applied here as the new nodes generation criteria. However, for the 
purpose of the adaptive MFDM, several special MFD oriented criteria are proposed as well. These 
provide control of both 

(i) magnitude of the residual error in selected locations, 
(ii) solution convergence examined at nodes common to the subsequent meshes, 

and, therefore, may applied in adaptive generation of the set of irregular meshes. 
 

6.3.1 Residual error based criterion 
 

Analysis of the a’posteriori error, especially the residual error estimation, is widely used in the 
h-adaptive mesh refinement technique in the MFDM [75]. The MFD operators are applied in order to 
evaluate the a’posteriori residual error for any discrete solution obtained. 

Using the locally defined boundary value problem (2.1) and (2.2), one may consider the 
corresponding true residual errors 
  

in

  onb b

r u f
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= − Ω
 = − ∂Ω

L

L
            (6.1) 

 
where u   is an approximated discrete solution. The following requirements (constraints) may be taken 
into account then 
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            (6.2) 

 
Here dη  and bη  are assumed magnitudes of the admissible error level threshold inside the domain Ω , 

and on its boundary ∂Ω , respectively. The above norms ⋅  may be taken 

(i) globally over the whole domain Ω , evaluating then the global residual error (6.1), 
(ii) globally over the chosen subdomains , 1,2,...,i i nΩ = , like in the FEM, 

(iii) locally at any required point iP  of the domain or on its boundary. 
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In the MFDM, a finite approximation of the residual errors (6.1) may be introduced at any point iP . 

By means of expansion of the nodal coefficients of the MFD operator iuL  into the Taylor series, the 

true residual error  ir   at the point iP  may be presented in the following form (see (5.8)) 

 

i i i i i i ir u f Lu R f= − = + ∆ + −L          (6.3) 

 
Like in the previous Chapter, here  iLu   is the basic MFD operator value (with p approximation order 

assumed), i∆ is the correction term, involving the higher order terms (higher order derivatives, 

singularities, jump terms up to, and including the s p+  order , 0 s p< ≤ ), and iR  presents the higher 

order terms neglected due to the Taylor series truncation. 
Two residual criteria, based on two different estimations of (6.3) formula may be applied. The most 
simplified, low order one uses only iLu  value (like (5.6)) 

 

i i

i

Lu f

f
η

−
≤              (6.4) 

 
It measures residual error resulting from 

(i) solution error  ( )Tu u− , 
(ii) truncation error  iR , resulting from the level of the local approximation assumed, 

(iii) MFD operator  iLu  quality (error due to neglecting the correction i∆  term). 

The improved criterion form contains also the correction term i∆  (see (5.7)) 

 

i i i

i

Lu f

f
η

+ ∆ −
≤             (6.5) 

 
Therefore, it is influenced only by the (i) and (ii) errors from the above list. The most important is that 
the residual criterion (6.5), as opposite to (6.4), does not depend on the precision of the MFD operator 

iLu . It will be applied here as the most precise tool for nodes generation criterion. The quality of the 

local approximation is individually controlled by the correction terms i∆ and may depend on the way 

the higher order terms are evaluated. 
 The question arises, where to check the residual criterion (6.5). It may be expected that the 
largest errors appear somewhere among the nodes. Especially, when the boundary value problem is 
posed in the local form, the residuals (6.4) and (6.5) are equal to zero at the nodes, due to the 
collocation requirement for the low order solution. Therefore, the most primitive way in 1D is to 
evaluate residual errors close to the mid points between neighbouring nodes (Fig.6.1a), while in 2D 
problems they may be found close to the centres of gravity of the Delaunay triangles (Fgi.1b), 
generated on any arbitrary irregular cloud of nodes. Smoothing is built into the MFD operator 
generation procedure, by means of the MWLS technique. 
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0jr ≠

0jr =

Find   at triangle gravity centres Find at the mid-pointjr jr

a) 2D case b) 1D case

 
Fig.6. 1: Approximate residual locations in 1D and 2D 

 
However, approach based on residual error norms is specially effective when using the mesh 

density based node generator of Liszka type [51, 53 ÷ 57, 75, 85, 100]. The MFDM local residuals are 
checked then at points, which belong to the mesh one level denser than the one currently analysed 
(Fig.6.2). This approach may be easily extended, when the removal of nodes is needed.  The local 
residuals are evaluated then at points located in the closest neighbourhood to the nodes, which belong 
to one level coarser mesh (Fig.6.3). 

The exemplary adapted mesh, obtained by using mesh generator of Liszka type, is shown in 
Fig.6.4. The MFDM solution is obtained in the old nodes, and on that basis, the residuals (6.3) are 
evaluated in potential nodes locations. New nodes are generated according to the (6.5) criterion. 
 

In practical calculations, beside the residual error criterion (6.5), also additional error based 
criteria may be applied, e.g. the upper limit for percentage number of new nodes among all possible 
node locations. 
 

mesh densityρ 1/ 2ρ +

Potential locations of a new node (local mesh density + 0.5)
Node will be inserted there only if a'posteriori error analysis

indicates such need

OLD NODES POSSIBLE LOCATIONS OF NEW NODES
 

Fig.6. 2: Potential locations of the new nodes 
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mesh densityρ 1/ 2ρ −

Potential old nodes to be removed, and new mesh (local 
mesh density - 0.5) The node will be removed if 

a'posteriori error analysis indicates need for coarser mesh 
here

OLD NODES NODES FOR POSSIBLE REMOVAL
 

Fig.6. 3: Potential old nodes to be removed 

 

Old nodes Proposed location of
new nodes

Accepted new
nodes

 
Fig.6. 4: Example of 2D adaptive mesh 

 
6.3.2 Analysis of the solution convergence 

 
In the adaptation process, one deals with a set of irregular, more and more dense meshes. Usually, 
each mesh contains all nodes of the less dense one. A solution convergence rate 
 

1k k
i ik

i ek
i

u u

u
β η

−−
= ≤                        (6.6) 

 
is examined at those nodes , 1,2,...,iP i n=  which preserve the same locations in the subsequent 

meshes ..., 1, ,...k k− ., and eη  is an imposed error threshold value resulting from the required solution 

precision. Use of any other nodes though possible, would be less effective. 
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Using both error criteria (6.2) and (6.6) defined above, one may generate a series of more and 
more dense meshes, as established by an adaptive solution process. It is worth stressing that both ill-
conditioning and very slow convergence solution phenomena may be detected and also controlled this 
way. However, both criteria (6.2) and (6.6) should be satisfied then in order to ensure appropriate 
solution quality of the analysed boundary value problem. 
 
 The above error criteria may be also applied to the adaptive solutions obtained by means of the 
global MFDM, or by other discrete methods like the FEM. Moreover, in the MFDM, any global error 
criteria (in the integral form) may be applied as well. 

 
Beside mesh modifications based on error criteria, also further mesh changes may be 

necessary due to requirements imposed on mesh density. 
 

6.3.3 Mesh smoothness condition 
 

It is convenient to define, and use the notion of irregular mesh density in order to control mesh 
modifications. The mesh density for both the regular and  irregular meshes was defined in Chapter 2.  
Density of the regular mesh is in the inverse proportion to the side of the square assigned to a node 
(2.5). The notion of the mesh density of regular mesh [54, 56] may be extended for arbitrarily irregular 
meshes [75]. One may use the Voronoi tessellation in order to find the Voronoi polygons (in 2D, 
Fig.2.7, or polyhedron in 3D) assigned to each node. Converting each Voronoi polygon into an 
equivalent square (cube) of the same surface area  iΩ  (or volume iV ), one may determine the local 

mesh density  iρ   at a node i, according to the formula (2.7), in the same way as it was done for the 

regular mesh. Mesh density ( , )x yρ  at any arbitrary point ( , )x y  of the domain Ω  is obtained 
through an appropriate approximation of known nodal densities. 
 

The following strategy is proposed for controlling mesh smoothness, especially for avoiding 
rapid changes in the mesh density 
 

(i) perform the Voronoi tessellation of the domain Ω  and find the value characterising the 
mesh density change between each pair of nodes iP  and jP  

 

( ) ( )2 22,
i j

ij ij i j i j
ij

x x y yη ρ
ρ

Ω − Ω
= = − + −       (6.7) 
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Fig.6. 5: Adaptive mesh modification due to smoothness requirements 
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(ii) check whether ij admη η≤  is satisfied in the whole domain Ω , where  admη  denotes an 

admissible gradient of the mesh density change, 
(iii) at each node IP  for which this condition is violated, find the neighbour node JP  with the 

maximum ijη  slope value, 

(iv) insert a new node at the point, closest to the midpoint between each pair of nodes IP  and 

IP , which belongs to the one level denser mesh (Fig.6.5), 

(v) repeat the whole procedure until everywhere the gradient of the mesh density change is 
small enough, namely ij admη η≤ . 

 

Fine Intermediate Coarse
 

Fig.6. 6: 2D mesh  with smooth transition zones 

 
The exemplary mesh, with smooth transition between coarse and fine zones, obtained by using 
Liszka’s generator and above given algorithm, is presented in Fig.6.6. 

 
6.3.4 General strategy of the mesh refinement 

 
Both, residual error based, and mesh smoothness criteria, may be applied in the MFDM 

solution approach, using Higher Order correction terms. The MFD approximation is provided by the 
appropriate correction terms of the MFD operators. Mesh modification is based on the concept of the 
generation criteria, followed the a’posteriori error analysis and Liszka’s sieve method [54, 75]. The 
proposed solution approach consists of the following steps 

 
(i) choose the formulation of the boundary value problem, optimal for the analysed 

physics domain, 
(ii) plan and generate the initial coarse mesh by the Liszka’s method, 
(iii) perform Voronoi tessellation and Delaunay triangulation, generate the mesh 

topology information, 
(iv) select the nodes to the MFD stars, e.g. using Voronoi neighbours criterion, 
(v) generate the MFD formulas, by means of the MWLS approximation, 
(vi) generate the MFD equations, in a way dependent on the boundary value problem 

formulation considered, 
(vii) impose the boundary conditions, 
(viii) solve the appropriate SAE and obtain the low order solution, 
(ix) find the Higher Order corrections, for the MFD operators from inside the domain 

and on its boundary, by appropriate formulae composition and other techniques, 
mentioned in Chapter 4, 

(x) solve the modified SAE (only the right hand side of the SLAE is modified) from 
the (viii) step and obtain the Higher order solution, 

(xi) find the potential locations of new nodes using one lever denser mesh (add ½ in 2D 
problems or 1 in 1D ones)  than the one applied to the actual mesh, 
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(xii) examine the residual error criterion (6.5) at potential locations of new nodes. Insert 
new nodes at points where this criterion is violated (admissible error norms are 
exceeded), 

(xiii) examine the mesh smoothness by evaluating gradient of the mesh density change 
(6.7) at each node, and insert new nodes where the smoothness criterion is violated, 

(xiv) unless all error norms admissible for the final solutions (6.2) and (6.6) are satisfied, 
return to the (iii) step of this algorithm. 

 
This way old nodes remain in their locations and new nodes are added. However, one may 

also wish to remove the old nodes sometimes, e.g. when they are totally surrounded by examined 
points with sufficiently low values of residual error. However, only those nodes, belonging to the 
actual mesh, that do not belong to one level coarser mesh (-½ step in 2D problems, or -1 in 1D ones), 
and are not prescribed as fixed ones (e.g. in the corners), may be removed according to the strategy 
worked out. 
 The proposed adaptive solution approach may be also presented in the form of the flow chart 
(Fig.6.7). 
 

- Formulation (local, global, …)
- Basic coarse generation (n)

- Mesh topology generation
- MFD star classification and generation

(at nodes)
- MFD formulas generation (MWLS)

LOCAL FORMULATION GLOBAL FORMULATION

- collocation technique for 
MFD equations generation - MFD star generation at Gauss point

- aggregation

- imposition of the boundary conditions
- SLAE solution

- low order derivatives calculations
- higher order derivatives composition

- correction terms composition

higher order 
solution

stabilized?

NO

YES
- selection of the potential locations of new nodes

- a’posteriori error analysis
(evaluating residuals in those potential locations)

- adding new nodes due to residual criterion

- adding new nodes due to smoothness criterion
admissible error
norms reached?

NO

YES

- postprocessing of final results

variational principle functional minimization

 
Fig.6. 7: Adaptive solution approach - flow chart 
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The HO approximation technique, combined with the h - adaptive mesh generation is expected 
to work effectively with the multigrid solution approach [10, 51, 75, 85, 100, 93], reducing 
computational time spent on analysis of large boundary value problems. In the multigrid approach, one 
deals with the set of meshes, varying from coarse to fine. Usually, each finer mesh includes all nodes 
of the previous one. Multigrid approach, which was applied in the present work, uses original concepts 
of prolongation and restriction [51, 75, 85, 100]. Prolongation procedure extends the solution obtained 
for a coarse mesh to a finer one. Residuum calculated for the finer mesh is reduced then to a coarser 
mesh by means of the restriction. The whole solution process needs to be used twice. At first for the 

low order solution, corresponding to the low order residual error ( ) 0L
ir = , and later on for the higher 

order one, relevant to the HO residual error ( ) 0H
ir = . This problem will be discussed in the following 

Chapter. 
 
 

6.4 Global error indicators for regular and irregular meshes 
 

6.4.1 Problem formulation 
 

During the adaptation process, one deals with the set of meshes, usually strongly irregular 
ones. As the final stage of the adaptation approach, one of the main interests is estimation of the 
convergence of both the solution and residual. Therefore, besides the locally defined (at any required 
point of the mesh) solution and residual errors, each mesh should have its own representation, 
characterising both the domain discretization (mesh modulus, number of nodes, etc.) and the measured 

error. Usually, this representation is given as the pair of ( ),n e  or ( ),h e , where  n – number of 

nodes, h – mean mesh modulus and e  - error norm, evaluated in the whole domain Ω . 

  

h h h h h h

½h ½hh h3
2

3
2h h

n = 7
hav = h

n = 7
hav = h

 
Fig.6. 8: 1D regular and irregular mesh with the same number of nodes and mean mesh modulus, 

but with various nodes distribution 

 
representation mesh no.1 mesh no.2 

nodes number n 7 7 

mean h  h h 

integral 2h h dx= ∫  36h  39h  

integral h hdx= ∫  26h  27h  

discrete 
1

2 2
1

( )i
i

h h
N

= ∑  
6

7
h  h  

Tab.6. 1: Comparison of various modulus representations for two meshes 
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However, this approach, though commonly used in the FEM, does not exhibit sufficient sensitivity to 

the mesh irregularity. Therefore, the optimal representative pair of ( ),h e  should take into 

consideration also the distribution of irregularly located nodes [89, 90, 91]. It will allow then for 
distinction between meshes with the same mean mesh modulus (or the same nodes number), but with 
their various distribution. For the illustration purpose, such two exemplary 1D meshes are shown in 
Fig.6.8. Various representations of the mesh discretization (Fig.6.8) are shown in Tab.6.1 
 

6.4.2 Error indicators 
 

Beyond the FEM based global error criteria, discussed above when used in the MFDM based 
error analysis, several other, possibly more subtle error measures were developed and applied, 
especially for arbitrarily irregular meshes. These are so called error indicators,  proposed and examined 

in [89, 90, 91]. They determine a pair ( ),h e  of a local mesh modulus h , and a local solution or 

residual error e  representing the cloud of all (N) examined points in the whole mesh.  
 

0 1 2 3 4 5 6 7 8 9

1h 2h 3h 4h 5h 6h 7h 8h 9h

1e

2e

3e

4e
5e

6e

7e

8e 9e

 
Fig.6. 9: 1D local representation of irregular mesh 

 

( , )i i ih e= Ω

Ω
ih

iΩ

×

 
Fig.6. 10: 2D local representation of the irregular mesh 

 
After obtaining MFD solutions on the single mesh, one calculates at each investigated point 

, 1,2,...,iP i N=  

(i) the local mesh modulus ih , evaluated using mesh density notion, defined for any 

arbitrary point of the irregular mesh (i ih l=  - length of a node interval in 1D - 

Fig.6.9, 2
i ih = Ω  - surface area of a Voronoi polygon in 2D – Fig.6.10, 3

i ih V=  - 
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volume of the Voronoi polyhedron in 3D), and found at points belonging to the one 
step more dense mesh but not appearing yet in the currently considered mesh, 

(ii) the local amount of  (solution and/or residual) error estimate ie , found at the same 

points as ih . 

 

h

e

( )1 1,h e

( )2 2,h e

( )3 3,h e

( )4 4,h e

( )5 5,h e

( )6 6,h e

( )7 7,h e

( )8 8,h e

( )9 9,h e

( )

( )
i

i

h h h

e e e

=
= finite representation

of the set of pairs(h,e)

- error indicator ( ),h e

 
Fig.6. 11: Cloud of points (h,e) and its representative pair 

 
Evaluating those pairs at each investigated point (shown for 1D case in Fig.6.9 and for 2D case in 

Fig.6.10), leads to the cloud of arbitrarily distributed points ( ),i ih e  - Fig.6.11. The optimal 

representation ( ),h e  of all pairs ( ),i ih e  is sought and called the error indicator [89, 90, 91]. This can 

be performed in many ways. Some of them are presented below.  
 
The error indicators, proposed here,  can be divided into three groups [89, 90, 91], as follows 
 

(i) integral type error indicators 
 

1. 
1 1 1 1

2 3 2 22 2 2 2
1 1 1 1

( ) ( ) , ( ) ( )i i i
i i

h h dx h e e dx e h
Ω Ω

= ≈ = ≈ ⋅
Ω Ω Ω Ω∑ ∑∫ ∫      (6.8) 

2. 21 1 1 1
,i i i

i i

h h dx h e edx e h
Ω Ω

= ≈ = ≈ ⋅
Ω Ω Ω Ω∑ ∑∫ ∫       (6.9) 

 
(ii) discrete type error indicators 
 

3. 
1 1

2 22 2
1 1

( ) , ( )i i
i i

h h e e
N N

= =∑ ∑  - inertia radius     (6.10) 

4. 
1 1

,i i
i i

h h e e
N N

= =∑ ∑   - center of gravity    (6.11) 

 
(iii) error indicators of combined type 
 

5. 

1
2 21

2 21 1
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i
i i i
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N h N h

  
 = =  
   

∑ ∑       (6.12) 
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6. 
1 1

, i
i

i i i

ee
h h

N h N h
= =∑ ∑            (6.13) 

 
In the adaptation process, each mesh has its own representative pair of  ( , )h e . As it was shown in the 
previous works [89, 90, 91], the best results are obtained for the simplest pairs of the discrete 
indicators (6.10) and (6.11) (the centre of gravity). However, all of the above will be tested here. 

 
Distribution of  ( , )h e  provides estimation of the convergence rate of the considered quantity, and tests 
quality of the error indicators as well. 
 

6.5 Convergence analysis 
 

When the final adopted mesh is obtained, and the admissible error norms are reached, usually 
required is estimation of the solution and residual convergence rate. Therefore, the following strategy 
is proposed 

(i) find representative pair of ( , )h e  for each mesh in the adaptive process and collect them 
together (usually in a graph with the logarithmic scale, Fig.6.12), 

 

1,2,...,i m=

m - number of
adapted meshes

a - convergence
rate

log( )y e=

log( )x h=

( , )ih e

1( , )h e

coarse mesh

medium mesh

( , )mh e
fine mesh

LSapproximation

y a x b= ⋅ +
a

 
Fig.6. 12: Study on convergence rate and indicator quality 

 
(ii) Approximate results (using linear LS regression), 
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           (6.14) 

 
(iii) Estimate convergence rate  a  of the measured quantity (solution and/or residual), 
(iv) Evaluate the quality of the error indicator applied obtained upon pairs ( , )h e  by means 

of the mean deviation 
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2

1

1
( )

m

mean i i
i

B a x b y
m =

= ⋅ + −∑                    (6.15) 

 
 The smallest error norm (6.15), the better quality of error indicator is. Besides this error norm 

meanB , typical for numerical calculations, some other may be also applied, including statically based 

ones e.g. well-known correlation coefficient 
  

( )( )

( ) ( )
1

2 2

1 1

m

i mean i mean
j

m m

i mean i mean
j j

h h e e

c

h h e e

=

= =

− −
=

− ⋅ −

∑

∑ ∑
                   (6.16) 

 

where  
1

1 m

mean i
j

h h
m =

= ∑   and  
1

1 m

mean i
j

e e
m =

= ∑ .  

 
Both (6.15) and (6.16) formulas were applied in calculations. It will be shown that they yield 

similar results, providing proper evaluation of the error indicator quality. Therefore, the more sensitive 
one (6.15) is recommended here, moreover it needs less computational effort. 
 

6.6 Numerical examples 
 

A variety of 1D and 2D benchmark tests were done. The adaptive solution approach was 
applied together with a study on the solution and residual convergence. Many aspects were 
investigated, especially in the early stage of analysis. Tests were performed in order to determine a set 
of the optimal adaptation parameters, like the admissible threshold of error norms, percentage of new 
nodes in adaptive meshes, type of the error indicators and many more. Some of those results, 
representative for the solution approach, are presented here. 

 
6.6.1 1D tests 
 
Analysed was the same 1D boundary value problem of the second order, as in the preceding 

Chapters, given in the local formulation 
 

''( ) '( ) ( ), (0,4)

(0) (4) 0, 1

w x a w x f x x

w w a

+ = ∈
= = =

                    (6.17) 

 
Considered were three right hand side functions  ( )f x  corresponding to three different analytical 
solutions, exhibiting various features. Two of them, namely 1D benchmark no.2 and 1D benchmark 
no.3, will be discussed here. Their analytical solutions and right hand side functions are presented 
once again in Fig.6.13. 
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( )w x ( )w x

( )f x( )f x

benchmark no.2

benchmark no.2

benchmark no.3

benchmark no.3

 
Fig.6. 13: 1D benchmark no.2 and no.3 - analytical solutions and right hand side functions 

 
Many aspects of the proposed approach were tested. The most interesting are: 

• application of the higher order estimators to appropriate adaptive mesh generation, 
• examinations of adaptively generated irregular meshes, taking into account nodes distribution, 

concentration zones, boundary treatment, as well as improvement of solution and residuum, 
• comparison of the results obtained when using irregular meshes with the results obtained for 

regular meshes with the same number of nodes, 
• examination of the error indicators on the sets of regular and irregular meshes, 
• convergence rate, and improvement of solution quality for irregular meshes, 
• comparison between results obtained using correction terms and other Higher Order 

approximation methods, especially the multipoint approach [15, 83, 81, 82] 
 
Examination of the error indicators on the set of regular meshes – 1D benchmark no.2 
 

First examination of the indicators will be done on the set of, a’priori given regular meshes. 
The set of 50 regular meshes was applied, starting from the mesh with 5 nodes only. Considered was 
benchmark no.2, with smooth and regular analytical solution. 

 
In Fig.6.14 and Fig.6.15, in the logarithmic scale, presented are, solution convergence and 

residual convergence, respectively. Shown are true low order and higher order solution errors, as well 
as the low order and improved, higher estimates of the residual error. Near the graphs and in the 

legends as well as in Tab.6.2, presented are convergence rates (( )LTa  for low order solution, ( )HTa  for 

higher order solution, ( )La  for low order residuals, ( )Ha  for higher order residuals) and convergence 

improvements (
( )

( )

HT

LT

a

a
 for solution, 

( )

( )

H

L

a

a
 for residual), as well as examined are all error indicators. 

Examination is performed in two ways, both using error norm (6.15) (B) and the correlation 
coefficient (6.16) (c).  
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Fig.6. 14: Solution convergence, set of regular meshes, 6 error indicators – 1D benchmark no.2 
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Fig.6. 15: Residual convergence, set of regular meshes, 6 error indicators – 1D benchmark no.2 
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 1. 

integral 
2. integral 3. discrete 4. discrete 5. mixed 6. mixed 

( )LTe  ( )LTa  1.8630 1.8966 1.8630 1.8966 1.8630 1.8966 
 ( )LTB  0.0045 0.0048 0.0045 0.0048 0.0045 0.0048 

 ( )LTc  0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 
( )HTe  ( )HTa  4.8442 4.8751 4.8442 4.8751 4.8442 4.8751 

 
( )

( )

HT

LT
a

a
 2.6002 2.5705 2.6002 2.5705 2.6002 2.5705 

 ( )HTB  0.5160 0.5712 0.5160 0.5712 0.5160 0.5712 

 ( )HTc  0.9974 0.9971 0.9974 0.9971 0.9974 0.9971 
( )Lr  ( )La  1.4254 1.8385 1.4254 1.8385 1.4254 1.8385 
 ( )LB  0.0121 0.0511 0.0121 0.0511 0.0121 0.0511 

 ( )Lc  0.9993 0.9982 0.9993 0.9982 0.9993 0.9982 

( )Hr  ( )Ha  3.0970 3.5590 3.0970 3.5590 3.0970 3.5590 

 
( )

( )

H

L
a

a
 2.1728 1.9358 2.1728 1.9358 2.1728 1.9358 

 ( )HB  0.4226 0.5023 0.4226 0.5023 0.4226 0.5023 

 ( )Hc  0.9948 0.9953 0.9948 0.9953 0.9948 0.9953 

Tab.6. 2: Solution and residual convergence, set of regular meshes, 6 error indicators – 1D 
benchmark no.2 

 
In Tab.6.6.2 in bold are shown the convergence rates as well as convergence improvements. 

Each indicator works properly. It is worth stressing that indicators no.1, 3 and 5 give the same results, 
close to the moment of inertia of the scattered data from the single mesh. The same observation may 
be made for the results obtained using indicators no.2, 4 and 6 (result is close to the centre of gravity 
of the scattered data taken from a single mesh). The convergence rate of the higher order solution is 
close to 5, due to mesh regularity which reveals symmetry of the MFD operator in the internal nodes. 
Improvements order is close to 2 each time, which gives about 100 times faster convergence of the HO 
solution than the low order one. 

 
Adaptive solution approach -  1D benchmark no.2 
 
 This time the set of irregular meshes will be generated using a’posteriori residual error 
estimation and additional techniques. The process follows the assumptions 

• after obtaining higher order solution,  ( ) , 1,2,...,H
iw i n= , the residual estimate 

( ) , 1,2,..., 1H
jr j n= −  is calculated at every point between two neighbouring nodes (location 

of the potential new nodes, is given by the Liszka type generator), 

• new nodes are generated, if ( ) , 1,2,..., 1H
jr j nη≥ = − , where the threshold value is 

( )
max0.9 Hrη = ⋅ , this way new mesh consist of all old nodes and a small amount of  new ones 

each time, 
• the smoothing condition, posed in 1D problems on the two neighbouring intervals  

1

1

2i i

i i

x x

x x
−

+

− ≤
−

 or 1

1

1

2
i i

i i

x x

x x
−

+

− ≤
−

, implicates from the general rule (6.7) and is checked node by 

node. In locations, where this condition is violated, each time a new node is inserted between 
appropriate two nodes ( 1,i ix x−  or 1,i ix x+ ), 

• on each mesh, solution and residual errors are evaluated using 6 error indicators (6.8) ÷ (6.13). 
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Fig.6. 16: Irregular adaptive meshes for 1D benchmark no.2 

 

 
Fig.6. 17: Irregular adaptive meshes for 1D benchmark no.2 - cont. 
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Fig.6. 18: Irregular adaptive meshes for 1D benchmark no.2 - cont. 

 
Fig.6. 19: Irregular adaptive meshes for 1D benchmark no.2 - cont. 

 
 50 meshes were generated adaptively, starting from the coarse regular mesh with 5 nodes. 
Those meshes are presented in Fig.6.16-19. As the problem is not very sophisticated,  these meshes are 
quite regular inside the domain, with a small concentration near the boundary, where the MFD 
approximation is of worse quality. Therefore, comparison of adaptive cloud of npdes with a set of 
regular ones will be done for the 1D benchmark no.3, where significant lack of regularity appears.  
 
Examination of the error indicators on the set of irregular meshes – 1D benchmark no.2 
 
 The set of 50 irregular meshes, generated using a’posteriori error estimation for the benchmark 
no.2, was applied in the convergence analysis. Like for the regular meshes, convergence for true 
solutions (Fig.6.20), and for residual estimates (Fig.6.21) are presented separately. Convergence rates, 
improvements, error norms and correlation coefficients are collected in Tab.6.3. 
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Fig.6. 20: Solution convergence, set of irregular meshes, 6 error indicators – 1D benchmark no.2 
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Fig.6. 21: Residual convergence, set of irregular meshes, 6 error indicators – 1D benchmark no.2 
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 As opposite to the regular meshes results, the error indicators results differ from each other, in 
the case of irregular meshes. The best results among them (in the sense of least square error B and 
correlation coefficient) are obtained using the simplest indicators, namely no.3, no.4 and no.5, for 
solution error convergence (Fig.6.20), while in the residual convergence (Fig.6.21) one may observe 
that there is no significant difference between those estimators. 
 
 

  1. integral 2. integral 3. discrete 4. discrete 5. mixed 6. mixed 
( )LTe  ( )LTa  1.7020 1.7209 1.7455 1.7841 1.7170 1.7881 

 ( )LTB  0.9846 0.9415 0.7842 0.7226 0.8660 0.7733 

 ( )LTc  0.9471 0.9503 0.9586 0.9628 0.9532 0.9605 
( )HTe  ( )HTa  3.9806 4.0085 4.0298 4.0934 4.0443 4.1182 

 
( )

( )

HT

LT

a

a
 2.3388 2.3293 2.3087 2.2944 2.3555 2.3032 

 ( )HTB  0.7506 0.7255 0.4436 0.4370 0.4387 0.4862 

 ( )HTc  0.9921 0.9925 0.9954 0.9955 0.9954 0.9951 
( )Lr  ( )La  1.6601 1.8565 1.6261 1.8508 1.4387 1.7668 

 ( )LB  0.0602 0.0302 0.0250 0.0477 0.0220 0.1069 

 ( )Lc  0.9963 0.9985 0.9984 0.9976 0.9982 0.9941 
( )Hr  ( )Ha  3.5182 3.6776 3.5710 3.7586 3.5077 3.7418 

 
( )

( )

H

L

a

a
 2.1192 1.9809 2.1961 2.0308 2.4380 2.1179 

 ( )HB  0.1918 0.2429 0.2652 0.4322 0.3378 0.4403 

 ( )Hc  0.9974 0.9970 0.9965 0.9947 0.9953 0.9946 

Tab.6. 3: Solution and residual convergence, set of irregular meshes, 6 error indicators – 1D 
benchmark no.2 

 
 
Adaptive solution approach -  1D benchmark no.3 
 
 The problem marked as benchmark no.3 is much more sophisticated and demanding that the 
previous one. Especially, due to the polynomial peak, added in the first half of the domain. The exact 
solution and the right hand side function exhibit large amount of gradients. Therefore, nodes 
concentration is expected there. 
 
 The initial regular mesh consists of 17 nodes, regularly spaced. 50 meshes were generated 
using similar techniques, as for the benchmark no.2, mentioned above. These meshes are shown in 
Fig.6.22 – Fig.6.25, whereas in Fig.6.26 presented is the last fine mesh, with mesh density evaluated, 
together with the first derivative of the right hand side function (Fig.6.26a) as well as with the residual 
error (Fig.6.26b). Such comparison partially explains the location of  the nodes concentration zones in 
the domain. The other zones come from worse quality of the boundary approximation. 
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Fig.6. 22: Irregular adaptive meshes for 1D benchmark no.3 

 

 
Fig.6. 23: Irregular adaptive meshes for 1D benchmark no.3 – cont. 
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Fig.6. 24: Irregular adaptive meshes for 1D benchmark no.3 – cont. 

 

 
Fig.6. 25: Irregular adaptive meshes for 1D benchmark no.3 – cont. 
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Fig.6. 26: The final adaptive mesh, a) density and '( )f x  , b) density and rH(x) 

-0.4 -0.2 0
-5

-4

-3

-2

-1

0

1 BL = 4.02, cL = 0.8996

BH = 9.61, cH = 0.9457

1: INT: h3/L, he2/L

log10(h)

log10(e)

eL (aL=3.99)
eH (aH=8.71, H/

L
=2.18)

-0.6 -0.4 -0.2 0
-5

-4

-3

-2

-1

0

1 BL = 2.64, cL = 0.9358

BH = 4.5, cH = 0.9755

2: INT: h2/L, he/L

log10(h)

log10(e)

eL (aL=3.39)
eH (aH=7.38, H/

L
=2.18)

-1 -0.5 0
-5

-4

-3

-2

-1

0

1 BL = 3.16, cL = 0.9236

BH = 2.34, cH = 0.9884

3: DIS: h2/n, e2/n

log10(h)

log10(e)

eL (aL=2.41)
eH (aH=5.61, H/

L
=2.33)

-1 -0.5 0
-6

-5

-4

-3

-2

-1

0

1 BL = 3.52, cL = 0.9156

BH = 3.01, cH = 0.9857

4: DIS: h/n, e/n

log10(h)

log10(e)

eL (aL=1.85)
eH (aH=4.4, H/

L
=2.38)

-1 -0.5 0
-6

-5

-4

-3

-2

-1

0

1 BL = 3.48, cL = 0.8723

BH = 4.45, cH = 0.9756

5: COM: h2/n, (e/h)2/n

log10(h)

log10(e)

eL (aL=1.88)
eH (aH=5.28, H/

L
=2.82)

-1 -0.5 0
-6

-5

-4

-3

-2

-1

0

1 BL = 3.67, cL = 0.8974

BH = 4.26, cH = 0.9792

6: COM: h/n, (e/h)/n

log10(h)

log10(e)

eL (aL=1.69)
eH (aH=4.32, H/

L
=2.56)

 
Fig.6. 27: Solution convergence, set of irregular meshes, 6 error indicators – 1D benchmark no.3 
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Fig.6. 28: Residual convergence, set of irregular meshes, 6 error indicators – 1D benchmark no.3 

 
  1. integral 2. integral 3. discrete 4. discrete 5. mixed 6. mixed 

( )LTe  ( )LTa  3.9879 3.3869 2.4116 1.8541 1.8762 1.6905 

 ( )LTB  4.0209 2.6428 3.1583 3.5205 3.4833 3.6676 

 ( )LTc  0.8996 0.9358 0.9236 0.9156 0.8723 0.8974 
( )HTe  ( )HTa  8.7063 7.3789 5.6141 4.4039 5.2824 4.3239 

 
( )

( )

HT

LT

a

a
 2.1831 2.1787 2.3280 2.3752 2.8155 2.5578 

 ( )HTB  9.6060 4.5001 2.3432 3.0104 4.4533 4.2584 

 ( )HTc  0.9457 0.9755 0.9884 0.9857 0.9756 0.9792 
( )Lr  ( )La  3.0475 2.6444 1.9674 1.5853 1.5476 1.4948 

 ( )LB  3.4140 2.2069 1.2089 0.9133 0.9432 0.9614 

 ( )Lc  0.8631 0.9150 0.9538 0.9674 0.9428 0.9618 
( )Hr  ( )Ha  6.6313 5.7668 4.2557 3.3525 3.6609 3.1422 

 
( )

( )

H

L

a

a
 2.1760 2.1807 2.1630 2.1147 2.3656 2.1020 

 ( )HB  11.4281 5.4679 2.0090 0.5455 1.2099 0.4797 

 ( )Hc  0.8972 0.9529 0.9828 0.9955 0.9860 0.9955 

Tab.6. 4: Solution and residual convergence, set of irregular meshes, 6 error indicators – 1D 
benchmark no.3 
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Examination of the error indicators on the set of irregular meshes – 1D benchmark no.3 
 

Convergence for the true solutions (Fig.6.27) and for their residual estimates (Fig.6.28) are 
presented separately. The convergence rates, improvements, error norms and correlation coefficients 
are collected in Tab.6.4. The best summarised results, taking into consideration both the solution and 
residual convergence, were obtained using simple error indicator no.4, of the discrete type, and it will 
be used consequently in the following tests as well. 
 
Comparison of the convergence results obtained in 1D benchmark no.3 for regular meshes and 
adaptive irregular cloud of nodes 
 
 Discussed is here a comparison of the solution (Fig.6.29a), and its residual convergence 
(Fig.6.29b) obtained on the set of irregular meshes (solid lines) presented above with those ones for 
the set of regular meshes (dashed lines) consisting of the same number of nodes. Calculations were 
performed using the discrete indicator no.4. As it might be expected, the higher order solution and 
residual errors have slightly smaller values and faster convergence for irregular meshes, even though 
the lack of the MFD star symmetry appeared. One may conclude, that it is worth to perform adaptation 
process in the MFDM with the HO approximation in case of problems which exhibit rapid changes in 
solution and/or its derivatives as well as in the form of right hand side function. 

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6
-7

-6

-5

-4

-3

-2

-1

log10(h)

log10(e)

REGULAR vs. IRREGULAR MESHES - SOLUTION CONVERGENCE

ADAP: eL (aL=1.94)
eH (aH=5.01, H/L=2.58)

REG: eL (aL=1.7)
eH (aH=4.49, H/L=2.64)

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6
-4

-3

-2

-1

0

log10(h)

log10(r)

REGULAR vs. IRREGULAR MESHES - RESIDUAL CONVERGENCE

ADAP: rL (aL=1.9)
rH (aH=4.05, H/L=2.13)

REG: rL (aL=1.85)
rH (aH=3.92, H/L=2.12)

LT
adape

LT
rege

HT
rege

HT
adape

L
adapr

L
regr

H
regr

H
adapr

 
Fig.6. 29: Comparison of solution and residual convergence on the set of regular (dashed lines) 

and irregular meshes (solid line) - 2D benchmark no.3 

 
Comparison of the convergence results of the local and  variational solutions – 1D benchmark no.3 
 

Though only the local formulation was analysed, the above tests were also done for 1D 
problem posed in two variational formulations, given in Chapter 3. The residual error, evaluated for 
variational forms, may be applied as the nodes generation criterion. Furthermore, variational forms 
may be also solved on the above set of irregular meshes. In Fig.6.30 shown is a comparison of the  
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Fig.6. 30: Solution convergence, comparison of three formulations, set of irregular meshes, 1D 

benchmark no.3 
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Fig.6. 31: Residual convergence, comparison of three formulations, set of irregular meshes, 1D 

benchmark no.3 

 
solution convergence of the local form (for the best error indicator no.4) with the solution convergence 
of the first non-symmetric (named “var1” in Fig.6.30 and Fig.6.31) and Galerkin symmetric 
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formulations (named “var2” here). In Fig.6.31 presented is comparison of the residual convergence for 
those formulations. Improvements of both the solution and residual are close to 2 in each case. The 
residual convergence is very similar for all formulations, whereas the least errors are obtained for the 
variational symmetric (Galerkin type) formulation. 
 
Comparison of the results with the other Higher Order methods – 1D benchmark no.3 
 
 Compared are convergence rates, evaluated on the set of regular meshes, of several MFD 
solutions, namely (i) standard, low order one (LO), (ii) Higher Order one (HO), provided by correction 
terms, (iii) – (v) three MFD solutions, using specific multipoint [15, 32, 81] approach of various 
approximation order (4-6), and finally, (vi) the Higher Order solution, obtained using direct Higher 
Order FD operators (Hackbush, [29]). The results (ii) – (v) are similar, however, the direct HO FD 
operator (vi) provide the least accuracy (Fig.6.32). 
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Fig.6. 32: Comparison of the convergence on the regular meshes, using several MFD techniques - 

1D benchmark no.3 

 
6.6.2 2D tests 

 
Analysed will be Poisson problem, with the essential boundary conditions 
 

2 ( , )w f x y in

w w on

∇ = Ω
 = ∂Ω

                                                          (6.18) 

{( , ), 0 1, 0 1}x y x yΩ = ≤ ≤ ≤ ≤  
 
Two cases will be examined corresponding to two right hand side functions ( , )f x y  resulting from 
two different analytical solutions, namely 
 
3. 2D benchmark no.1 (Fig.6.33) 
 

( , ) sin( ) , 0 1, 0 1 ( , ) 2sin( )w x y x y x y f x y x y= + ≤ ≤ ≤ ≤ → = − +     (6.19) 
 
4. 2D benchmark no.2 (Fig.6.34) 
 

2 2
3 3 0.5 0.5

( , ) exp , 0 1, 0 1
0.2 0.2

( , ) 6 6 exp( , )

x y
w x y x y x y

f x y x y x y

 − −   = − − + − − ≤ ≤ ≤ ≤ →         

→ = − − +

   (6.20) 
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Fig.6. 33: Exact results for the 2D benchmark no.1 
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Fig.6. 34: Exact results for the 2D benchmark no.2 

 
 The same 2D boundary value problem was analysed in the previous Chapters, although 
attention was laid upon different aspects then. In the following section, considered are 

• preliminary convergence tests performed on the set of regular meshes, 
• adaptive solution approach, based on a’posteriori estimation of the residual error, and mesh 

smoothing, 
• solution and residual convergence rate as well as their improvements obtained when using the 

Higher Order terms, providing HO approximation, 
• comparison with the other MFD solution approaches (e.g. multipoint approach). 
 

Convergence tests performed on the set of regular meshes – 2D benchmark no.1 
 

Considered were more and more dense, regular meshes with number of nodes systematically 
increasing. First mesh consists of 3×3=9 nodes. Results for the benchmark no.1 presented are in Fig.6. 
35 (solution convergence), and in Fig.6.36 (residual convergence) in the logarithmic scale. Two 
formulations of the boundary value problem were analysed, namely local and variational symmetric. 
The simple error indicator no.4 was applied for calculations. 
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Fig.6. 35: Solution convergence for the set of regular meshes, two formulations – 2D benchmark 

no.1 
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Fig.6. 36: Residual convergence for the set of regular meshes, two formulations – 2D benchmark 

no.1 

 
Convergence tests performed on the set of regular meshes – 2D benchmark no.2 
 
The same set of regular meshes was used for analysing convergence results for the benchmark no.2 
Results are presented in Fig.6.37 and Fig.6.38. Additionally, convergence rates for both the 
benchmark tests and for both formulations are shown in the Tab.6.5. Improvements  (bolded) of using 
correction terms are close to 2.0 each time, which means that the appropriate HO error is decreased 
about 100 times faster than the low order one. 
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Fig.6. 37: Solution convergence for the set of regular meshes, two formulations – 2D benchmark 

no.2 
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Fig.6. 38: Residual convergence for the set of regular meshes, two formulations – 2D benchmark 

no.2 

 
2D benchmark no.1 2D benchmark no.2 

 
local form 

variational  
form 

local form 
variational 

 form 

solution convergence ( )LTa  1.57 2.34 2.75 2.10 

solution convergence ( )HTa  5.08 4.62 4.51 3.94 

solution improvement 
( )

( )

HT

LT

a

a
 3.24 1.97 1.64 1.88 

residual convergence ( )La  1.46 1.37 1.40 1.44 
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residual convergence ( )Ha  3.58 3.51 2.62 2.67 

residual improvement 
( )

( )

H

L

a

a
 2.45 2.56 1.87 1.85 

Tab.6. 5: Solution and residual convergence, set of regular meshes, two formulations, 2D 
benchmarks no.1 and no.2 

 
Preliminary tests, performed on regular meshes, reveal potential power of the approach in 2D 
problems. In the following tests, irregular meshes will be analysed, generated using the adaptive 
solution approach. 
 
Adaptive solution approach  – 2D benchmark no.1 
 
 Like in the 1D tests, after solving the boundary value problem for the low order and HO 
solutions, a’posteriori error estimation of the residual error is evaluated in the potential locations of the 
new nodes. They are inserted, if the local residual error is larger than the threshold value, namely 

( )
max0.9 Hrη = ⋅ , where ( )

max
Hr  denotes the maximum residual error value from all potential nodes 

locations, where a threshold error value is exceeded. Afterwards, mesh smoothing is done in order to 
avoid abrupt changes in the mesh density. The basic coarse regular mesh consists of  4×4=16 nodes. 
50 meshes were generated, the last, finest one consists of 110, irregularly distributed nodes.  
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Fig.6. 39: 16 chosen meshes from the set of 50 adaptive irregular meshes - 2D benchmark no.1 

 
 Both the exact solution and right hand side function (6.19) do not exhibit any large gradients. 
Therefore, concentration of nodes is expected only near the boundary, where the values of the residual 
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error are the largest, due to worse quality of approximation. Some of those meshes (basic, intermediate 
and final ones) most representative for the whole set, are presented in Fig.6.39. The mesh density for 
the final mesh with 110 nodes is showed in Fig.6.40. 
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Fig.6. 40: Density of the final adopted mesh - 2D benchmark no.1 
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Fig.6. 41: Solution convergence on the set of irregular meshes - 2D benchmark no.1 
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Fig.6. 42: Residual convergence on the set of irregular meshes - 2D benchmark no.1 

 
Convergence of the both low order and higher order solutions, and residuals are presented in 

Fig.6.41 and Fig.6.42, respectively. Additionally, convergence rates are collected in Tab.6.6, together 
with corresponding ones, calculated on the set of regular meshes, with similar number of nodes. 

 
 

2D benchmark no.1 
regular meshes 
(from Tab.6.5) 

adaptive irregular meshes 

solution convergence ( )LTa  1.57 1.55 

solution convergence ( )HTa  5.08 3.96 

solution improvement 
( )

( )

HT

LT

a

a
 3.24 2.55 

residual convergence ( )La  1.46 1.42 

residual convergence ( )Ha  3.58 3.95 

residual improvement 
( )

( )

H

L

a

a
 2.45 2.87 

Tab.6. 6: Solution and residual convergence - comparison between regular and irregular meshes 
- 2D benchmark no.1 

 
Adaptive solution approach  – 2D benchmark no.2 
 
 The set of irregular meshes was generated for the local formulation of the 2D benchmark no.2, 
using the a’posteriori residual estimation as the generation basis. Here, meshes are characterised by 
strong irregularity. This is caused by the form of the analytical solution and the right hand side 
function of the differential equation. Therefore, nodes should be mostly located in the middle of the 
square, where those functions have the largest gradients.  
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Altogether 60 meshes were generated. Sixteen chosen ones are shown in Fig.6.43. The mesh 
density of the final mesh, with 179, is presented in Fig.6.44. 
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Fig.6. 43: Chosen meshes from the set of 60 adaptive irregular meshes - 2D benchmark no.2 

 
 Concentration zone is located in the middle of the domain, whereas on the boundary only few 
nodes were added, opposite to the previous test. 
 
Comparison of the results with the convergence on the set of irregular meshes – 2D benchmark no.2 
 
 Convergence of the solutions and residuals on those meshes, with both the low and Higher 
Order approximation, is presented in Fig.6.45 (solution convergence) and in Fig.6.46 (residual 
convergence). Convergence rates for both regular and irregular meshes are collected in Tab.6.7. 
 

benchmark no.2 regular meshes adaptive irregular meshes 

solution convergence ( )LTa  2.75 2.01 

solution convergence ( )HTa  4.51 4.29 

solution improvement 
( )

( )

HT

LT

a

a
 1.64 2.37 

residual convergence ( )La  1.40 0.94 

residual convergence ( )Ha  2.62 2.32 

residual improvement 
( )

( )

H

L

a

a
 1.87 2.47 

Tab.6. 7: Solution and residual convergence - comparison between regular and irregular meshes 
- 2D benchmark no.1 
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Fig.6. 44: Density of the final adopted mesh - 2D benchmark no.2 
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Fig.6. 45: Solution convergence on the set of irregular meshes - 2D benchmark no.2 

 



 161 

L
locr

H
locr log( )h

log( )r

u2

 
Fig.6. 46: Residual convergence on the set of irregular meshes - 2D benchmark no.2 

 
Observed is significant convergence improvement (more than 2.0 in logarithmic scale gives 

more than 100 times faster convergence) of both the solution and residual errors, even though one 
deals with the set of strongly irregular meshes, where the MFD operators are far from being symmetric 
ones. On the other hand, one should remember, that the correction terms individually adjust any MFD 
operator to the assumed, 4th order, independently on the quality of the MFD operator applied. 
 
Comparison of the results with the other Higher Order methods – 2D benchmark no.2 
 

The proposed approach uses the higher order terms in the Taylor series expansion, in order to 
raise the rank of the local approximation. This approach was compared with the other higher order 
techniques, especially with the multipoint approach [15, 32, 81, 82]. A comparison was done first on 
the set of regular meshes for the considered 2D boundary value problem (2D benchmark no.2). 
Examined and compared were solution convergence rates. The results are presented in Fig.6.47. The 
classic MFD low order and higher order solutions, based on the correction terms, are compared with 
two different types of the multipoint solutions, and solution based on the HO MFD operator [22]. The 
HO solution, based on the correction terms, is slightly better in this case than the other HO solutions, 
although convergence of the multipoint solutions is faster then. 
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Fig.6. 47: Comparison with the other HO techniques – true solution error convergence 2D 

benchmark no.2 

 
6.7 Summary 

 
An adaptive HO solution approach to analysis of boundary value problems, based on the 

meshless FDM was presented. Solution process includes the original concepts of higher order 
approximation, a’posteriori error estimation, solution smoothing, nodes generation, and mesh 
modification, as well as convergence estimations (high quality error indicators) and an adaptive 
multigrid solution procedure. It will be discussed in the following Chapter in a more detailed way. 

Many 1D and 2D benchmark tests analysed so far indicate the potential power of the approach 
in fast solving (high convergence rate) boundary value problems, as well as in the error analysis and 
adaptivity. The total number of nodes in a considered mesh may be significantly reduced, without 
compromising the quality of the MFD solution improved by raising the rank of the local 
approximation. 

The question arises, whether it is right to complicate additionally the computing algorithm, 
and to perform the adaptation, instead of applying from the beginning, a mesh with many nodes (or 
degrees of  freedom). It appears that, in spite of growing power of computers, there still exist 
problems, both in mechanics and in other domains of physics, molecular biology, genetics, and many 
branches of technics where this is not possible to obtain valuable solutions, without the adaptive 
approach.  

First of all, adaptation is needed in large and very large b.v. problems (like 3D time dependent 
ones) with millions and millions of degrees of freedom, where, without adaptation, the task would be 
to large, especially for the regular meshes. Some other typical situations are e.g. the need of especially 
accurate approximation in the very small part of the large area, the excessive cumulation of the 
rounding errors, as well as drastic worsening of the convergence due to a large number of unknowns. 
Besides, in case of large boundary value problems, even tens percent savings of the calculation time, 
thanks to adaptationally chosen discretization, may result in savings of several days or hours. 
Sometimes it may have an essential meaning for the analysed problem. 

Adaptivity applied in the MFDM solution approach deals with the set of usually strongly 
irregular clouds of nodes. Nodes are inserted due to appropriate generation criteria. The computational 
cost of such process is higher than in the case of regular meshes only. The a’posteriori error estimation 
is required then. However, if the HO correction terms are used, the quality of the final solution as well 
as convergence rates of both the solution and residuum, are slightly better than in case of regular 
meshes. 

During the adaptation process, generated are clouds of nodes, usually denser and denser. 
Those meshes, especially the final one, are possibly best chosen for a b.v. problem in question. The 
most effective analysis based on such strongly irregular meshes, may be done using the multigrid 
solution technique. It will be discussed in the following Chapter.  
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7. Multigrid solution approach 
 
7.1 Introduction 
 

The MFDM approach yields simultaneous algebraic MFD equations (SAE). In the case of 
linear boundary value problems, these are linear equations (SLAE). The SLAE may have non-
symmetric (for local b.v. formulation) or symmetric nature (for global formulations). In the last case 
they might be solved by means of similar procedures like those for the FEM discretization (e.g. frontal 
analysis approach [7, 17, 30, 119, 120]). On the other hand, non-symmetric equations may use solvers 
developed e.g. for the CFD [1]. However, in each case the best approach seems to be development of 
solvers specific for the MFDM and taking advantage of this method nature. Especially, the multigrid 
adaptive solution approach seems to be effective [10, 29, 51, 75, 85, 93, 100, 92, 94, 95, 96]. 

The most important problem, in the case of large SLAE, is solution efficiency. Below is given 
a rough classification of methods most commonly used for solving the SLAE (Fig.7.1). These are 
selected according to the solution time needed. When the multigrid approach is applied, almost linear 
time dependency may be achieved, especially for the bounded SLAE. 

 

t
solution time
(for SLAE)

n
number of
unknowns

~ n – CFD

~ b n– multigrid

~ ⅓ b n 2 – Gauss-Jordan
bounded

~ ⅓ n 3 – Gauss-Jordan
~ n4 – Cramer

b – band width
 

Fig.7. 1: Comparison of the solution time needed for different SLAE methods 

 
In this Chapter, a revision [51, 75] of the multigrid technique (concepts of the prolongation and 
restriction) will be presented. Besides, shown will be, how to integrate the general multigrid idea into 
the MFDM adaptive solution approach. Higher Order approximation, provided by the correction 
terms, may be applied here, without any significant changes of the multgrid solution algorithm. Two 
simple, though instructive, 1D examples will be shown. Finally, presented will be the comparison of 
calculation time for the standard solution approach and the one using multigrid procedures. 
 
7.2 Problem formulation 
 

The general idea of multigrid analysis was proposed by A.Brandt [10] and further developed 
by W.Hackbush [29]. New concepts of basic multigrid procedures, especially the prolongation and 
restriction, were proposed, developed by J.Orkisz [75] and later applied in the MFDM [51, 75, 85, 
100].  Solution algorithms, designed for solving boundary value problems and extended for using the 
Higher Order approximation (provided by correction terms) in the MFDM and, were presented in [49, 
92, 94, 95].  

In the multigrid approach, one simultaneously deals with a series of meshes varying from 
coarse to fine. They may be given a’priori (non-adaptive multigrid solution approach) or obtained 
during an adaptive solution process, based on a’posteriori error estimation (adaptive multigrid solution 
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approach). Usually, though not necessarily, each finer mesh contains all nodes of the previous coarser 
ones. 

 

0 1 2 3

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10

( )

( )
0 3 0

0...3

L
i i i i

H
i

Lw f w

w w w

i

= − ∆
→ = =

=

( )

( )
0 5 0

0...5

L
i i i i

H
i

Lw f w

w w w

i

= − ∆
→ = =

=

( )

( )
0 8 0

0...8

L
i i i i

H
i

Lw f w

w w w

i

= − ∆
→ = =

=

( )

( )
0 10 0

0...10

L
i i i i

H
i

Lw f w

w w w

i

= − ∆
→ = =

=

1

2

3

4

nodes of the basic mesh (1)

new nodes of the mesh (2)

new nodes of the mesh (3)

new nodes of the mesh (4)

( )L
iw low order solution

higher order solution

i iLw f=

( )H
iw i i iLw f= − ∆

 
Fig.7. 2: Standard solution approach 

 
In the standard MFDM solution approach, one has to solve appropriate SLAE for every mesh 

separately (Fig.7.2). At first, for the basic, low order solution, and then, after doing the HO correction, 
for the Higher Order solution. 

 
In the multigrid solution approach, the exact solution obtained for a coarser mesh, is extended 

to a finer one by means of the so called prolongation procedure. Conversely residuum evaluated on a 
finer mesh is reduced to a coarse mesh by the restriction procedure. Correction, evaluated on the 
coarser mesh, using the same SLAE, as for the previously prolonged solution, is extended to the finer 
one, once again by means of the prolongation procedure. Prolonged correction yields, in the simplest 
case, the final solution, exact for the finer mesh. Usually in more sophisticated cases, additional 
smoothing approach is also required. 

The basic concepts of the proposed prolongation and restriction are described below.  
 
7.3 Prolongation 

 
The prolongation procedure consists of three essential steps 
 

(i) Generation of points at potential locations of the new nodes. There locations depend on 
the strategy adopted. In the non-adaptive multigrid approach, they are determined a’priori 
by the given series of meshes, from coarse to fine. In the adaptive multigrid approach, 
considered are points located somewhere between the nodes. The best strategy, worked 
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out so far, is to assume locations of new nodes obtained by the Liszka’s type mesh 
generator, based on an increase of the mesh density. This problem was discussed in the 
previous Chapter. 

 
(ii) Examination of the local residuals at each selected point without placing a new node there, 

and inserting nodes at these points where the admissible threshold error value is exceeded. 
Here, various additional strategies may be also applied, e.g. further limitation of the 
choice by prescribing the maximum percentage of new nodes in the mesh etc. The residual 
estimates are evaluated by using MFD operator, with additional correction terms, 
providing the independence from the quality of the MFD operator applied. These 
problems were discussed in the last two Chapters. 
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Fig.7. 3: Prolongation by solution smoothing 

 
(iii) Generation of the prolongation formula. in the classic multigrid approach, it may be found 

from smoothing the nodal solution (Brandt [10], Hackbush [29]) from the old, coarser 
mesh (Fig.7.3).  

 
However, in the MFDM, a new approach was developed in [51, 75] and will be used here. 
For the local formulation of boundary value problems, prolongation formula is derived 
from collocation condition. The MFD operator is generated then at every new node iP  

finally accepted. Two situations may be distinguished 
 

a) The MFD operator at the new node , NEW
iP i I∈  is built including this node and m  

old nodes (Fig.7.4) only (no other new nodes are involved). From the collocation 
condition 

 

( 1)

0

,
m

m NEW
i j i j i

j

L u f i I+
+ +

=

= ∈∑         (7.1) 

 
one finds the explicit prolongation formula [38, 54] 
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Fig.7. 4: Prolongation at the new node 

 
The prolongation formula (7.2) extends the solution , 1,2,...,i ju j m+ =  found at  the 

old nodes to a solution iu  required at the new node , NEW
iP i I∈ . Here ijα  and ib  are 

MFD coefficients resulting from the relation (7.1). 
 

b) The MFD operator at the new node , NEW
iP i I∈  is built including this node, and 

additionally cm  old nodes, and fm  new nodes. Following the collocation requirement  

 
1
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,
c f

c f

m m
m m NEW

i j i j i
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+ +

+ +
+ +

=

= ∈∑         (7.3) 

 
one obtains the implicit prolongation formula for the solution on the finer mesh 
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∑ ∑

∑ ∑
    (7.4) 

 
In this case, when the MFD star consists of the larger number of the old nodes 
( 1fm > ), additional techniques, e.g. smoothing, have to be applied. It is worth 

stressing that the formula (7.4) is quite suitable for effective iterative solution process. 
 

Prolongation approach of the same type also holds for the variational formulation of b.v. problems 

( , ) 0OLD NEWu uδΠ =  as well. It may be introduced at each new node assuming the local variations 

0NEWuδ ≠  and 0OLDuδ = . Such an approach could be used not only in the MFDM, but also in the 
FEM. 
 
7.4 Restriction 
 
After the prolongation, the restriction is the second most important procedure in the multigrid solution 
approach. It will be discussed here in a new original form proposed and developed in [51, 75]. 
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On the most fine mesh, one evaluates residuals 
 
r u f= −L              (7.5) 
 
however, instead of solving SLAE u f=L , on that mesh evaluation of appropriate residuals for a 
subsequent coarser meshes is done, using the following assumptions [51, 75]: 
 

(i) The “virtual  work” 
 

W r u dδ δ
Ω

= Ω∫            (7.6) 

 
done by residuals  r  (residual forces) on the virtual displacements uδ  is the same for both 
the old and new meshes. 

(ii) Virtual displacements of new nodes NEWuδ  are found from the prolongation formula (7.2) 
determined above, namely 

 
NEW OLD
i ij j

j

u uδ α δ=∑           (7.7) 

 
One may evaluate appropriate MFD expressions of the virtual work on the new mesh,  (7.8)  
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∑ ∑ ∑
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       (7.8) 

 
and on the old one (7.9) 
 
 

OLD OLD NEW
c c c

c

W r uδ δ≈ Ω∑            (7.9) 

 

where ,OLD NEWc I f I∈ ∈ .  

Taking advantage of the linear independence of the virtual displacements  OLD
cuδ  from each other, one 

may obtain the required relation between the residuals on the old mesh OLD
cr  and the residuals 

,NEW OLD
c cr r  determined on the new mesh 

 

( )OLD OLD OLD NEW NEW OLD NEW OLD
c c c f fc f c c c

f

r u r r uα
 

Ω ∂ = Ω + Ω ∂ 
 
∑      (7.10) 
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c f fc f c cOLD
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r r rα
 

= Ω + Ω Ω  
∑                   (7.11) 

 
In the above formulas, given are 
 



 168 

(i) residuals  ,NEW OLD
c cr r  for new and old nodes of the new mesh, 

(ii) surface areas of the Voronoi polygons , ,NEW OLD NEW
c c fΩ Ω Ω  for both the new and old 

meshes, 

(iii) residuals NEW
fr  and OLD

cr  for new and old nodes of the new mesh. 

 
7.5 Use of the Higher Order correction terms 
 

In the standard MFD multigrid approach, raising order of local approximation was possible 
due to use of the so called HO MFD operators (Hackbush, [29]). They were built on larger number of 
nodes, or, more general, on larger number of degrees of freedom. The same multigrid solution 
algorithm was used in order to reduce the appropriate residual error, which appeared after applying 
such modified MFD operator.  

In the HO approximation approach, proposed here, one does not need to generate new MFD 
operator. Instead of assuming new degrees of freedom, one has to consider appropriate correction 
terms of the same basic MFD operator, resulting from the Taylor series expansion of the sought 
function. Those terms modify the right hand side of the MFD residual defect, which may be reduced 
using the same prolongation and restriction procedures.  

 
The approach involves two steps 

 
(i) First, residual error on the last fine mesh (with no HO correction) is considered, namely 
 

( ) ( )L Lr Lu f= −                      (7.12) 
 

where ( )Lu  - is the prolonged solution from the previous meshes. When (7.12) is restricted to 

the basic mesh, it provides the appropriate correction ( )Lu∆  of the prolonged solution ( )Lu .  
 
As the final result, one obtains the low order solution, which is exact for the considered fine 
mesh 
 

( ) ( ) ( )L L Lu u u= +∆                      (7.13) 
 

(ii) Afterwards, when the low order solution ( )Lu  (7.13) is obtained and the correction terms 

( )( ) ( )L Lu∆ = ∆  are evaluated, considered is improved form of the residual error (7.12), 

obtained by modification of its right hand side 
 

 
( ) ( ) ( )H L Lr Lu f= − ∆ −                      (7.14) 

 
After substituting to residuum (7.14) the formulas (7.12) and (7.13), it may be simplified to 
the following form, 
 

( ) 0L∆ =                       (7.15) 
 
Here, the residual defect (7.15) comes directly from the HO correction, resulting from raising 
the approximation order, from p-th to 2p-th. 
 
When the residual defect (7.15) is restricted to the basic mesh, it provides the appropriate HO 

correction ( )Hu∆  of the low order solution (7.13). As the final result, one obtaines the HO 
solution, which is exact for the 2p-th polynomial 
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( ) ( ) ( )H L Hu u u= +∆                      (7.16) 

 
It is worth stressing, that the best quality Higher Order solution is usually required, only for 

the last, finest mesh. Therefore, an additional iterative solution smoothing of the Higher Order 
solution, corresponding to the (7.15), is not necessary on the intermediate meshes. For those meshes, 
one needs to apply the 3

2  + 3
2  = 3 of the multigrid cycle. In a particular case, the Higher Order 

solution is obtained only for the last mesh. 
 

7.6 Non-adaptive multigrid solution approach with HO approximation 
 

The above given concepts of the prolongation and restriction procedure are integral parts of 
the multigrid analysis. In the standard, non-adaptive, multigrid approach, one deals with the set of 
regular of irregular meshes, given a’priori. Usually, each new mesh contains all nodes of the old ones. 
However, this assumption does not hold, if nodes are removed from the subsequent meshes.  

In the multigrid approach, the appropriate SLAE are solved only for the first, usually the 

coarsest mesh. The solution  ( )Lu   is prolonged then step by step, to the last, finest mesh. After 
evaluating residuals (7.12) for that mesh, they are restricted to the first mesh, where the equivalent 

correction term ( )Lu∆  is calculated. The final corrected solution (7.13), exact for the last mesh, is 
obtained when residuals for this mesh reach zero. 
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Fig.7. 5: Non-adaptive multigrid analysis with HO approximation 

 
When the low order solution (7.13) is found, appropriate HO correction ( )L∆  may be 

evaluated, resulting from additional terms of the Taylor series expansion of the MFD operator. The 

residual defect (7.15) is restricted again to the basic mesh, when the equivalent correction ( )Hu∆  is 
calculated. The final HO solution (7.16), exact for the assumed approximation order, is obtained by 
means of correction prolongation.  
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The exemplary (non-adaptive) multigrid solution algorithm, for the given set of meshes (e.g. 
regular meshes from Fig.7.2), is presented in Fig.7.5. 
 
The whole non-adaptive multigrid approach consists of the following steps 
 

(i) determination of a set of meshes, regular or irregular ones, 
(ii) generation of the mesh topology (in 2D: Voronoi polygons, Delaunay triangles) for all 

meshes 
(iii) selection of MFD stars for all meshes 
(iv) generation of the MFD formulas for Du  (complete set of low order derivatives) and Lu  

by means of the MWLS approximation for all meshes; use of these formulae for 
composition of difference operator, corresponding to the differential operators, appearing 
in the boundary value problem formulation, 

(v) derivation of the Higher Order correction terms, ∆ , corresponding to the Du  and Lu  for 
the last mesh only, 

(vi) generation of the MFD equations, depending on the problem formulation, for all meshes 
(vii) imposing of the boundary conditions, for all meshes 

(viii) solution of ( )LLu f=  for the basic mesh, and obtaining the low order solution ( )Lu , 

(ix) evaluation of the correction terms ∆ , for the basic mesh, 

(x) solution of ( ) ( )H LLu f= − ∆  equation for the basic mesh, and obtaining the Higher Order 

solution ( )Hu , 

(xi) prolongation of the solution ( )Lu  through the intermediate meshes to the last mesh, e.g. in 
the case, when the MFD star, used for prolongation, contains only one new node 

• 
0

1 1
, 0,1,...,

l
NEW OLD NEW
i ij j i

jii ii
j i

u m u f i n
m m=

≠

= − + =∑  - prolongation formula for 

the new nodes in the new mesh, 
 

• , 0,1,...,NEW OLD OLD
i iu u i n= =  - prolongation formula for the old nodes 

(common for two meshes). 
 

The above given explicit formulae hold only for the simplect case, when each MFD star 
consists only one new node. However, MFD star, built in such way, are of worse quality 
than the ones using additional new nodes. The problem becomes implicit one then and 
should be treated in an iterative way.  

 
The above formulas may be presented in the matrix notation 
 

NEW OLD OLD+ = ⋅ +u M u f                     (7.17) 
 
where 
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M  - prolongation matrix, 
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(xii) optional smoothing steps for intermediate meshes and residual calculation on the last mesh 
 

 ( ) ( )L Lr Lu f= −                       (7.18) 
 

(xiii) residuum restriction to the basic mesh 
 

0

1
, 1,2,...,

NEWn
OLD NEW NEW OLD

i i i j j ij
ji

r r r m i n
=

 
= ⋅ Ω ⋅ + Ω ⋅ ⋅ = Ω  

∑  - restriction formula 

for the new nodes in the new mesh, which may be written in the matrix notation 
 

OLD OLD NEW+= ⋅r R r                     (7.19) 
 
where 
 

( )( ) { }
1

1
,

NEW OLD

OLD OLD NEW

n

ij ij ji j
n n n ji

R R M
+

× + =
= = ⋅Ω

Ω ∑R  - restriction matrix 

 

(xiv) solution correction term ( )Lu∆  calculation  for the basic mesh 
 

( )( )LL ∆ =u r                      (7.20) 

 

(xv) prolongation of the correction ( )Lu∆  through the intermediate meshes to the last mesh 
 

( ) ( )( ) ( )NEW OLD OLDL L+
∆ = ∆ +u M u r                               (7.21) 

 
(xvi) the final correction of the low order solution for the last mesh 
 

( ) ( ) ( )L L L= + ∆u u u                     (7.22) 
 

(xvii) evaluation of the correction terms for the last mesh 
(xviii) optional smoothing steps, residual calculation  
 

 ( ) ( ) ( )H L Lr Lu f= − ∆ −                     (7.23) 
 

(xix) repetition of the steps (xiii) – (xv) for the residuum ( )Hr  
(xx) the final correction of the Higher Order solution for the last mesh 
 

( ) ( ) ( )H H H= + ∆u u u                                 (7.24) 
 

(xxi) postprocessing of final results, on the last mesh. 
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Fig.7. 6: Non-adaptive multigrid solution path for HO MFDM 

 
The above given algorithm for the non-adaptive solution approach, may be illustrated in the following 
diagram (Fig.7.6). For the sake of simplicity, smoothing iteration steps are omitted here, following the 
assumptions that prolongation formulas are found using MFD stars with one new node only. 
 
7.7 Numerical examples 
 

The above given algorithm uses original concepts of the Higher Order correction terms applied 
to the multigrid cycle. It will be illustrated on two simple 1D examples. Both of them are dealing with 
the beam deflection, and two different types of boundary conditions (essential and natural). 
 
7.7.1 Simply supported beam 
 
Consider the following test problem (test no.1) 
 

2''( ) 12 32 (0,4)

(0) (4) 0

w x x x

w w

= − ∈
= =

                     (7.25) 

 

The true analytical solution of the problem is prescribed by the polynomial 4 2( ) 16w x x x= − . 
Given are two regular meshes, with  3 and with 5 nodes (Fig.7.7). 
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3 4

- Nodes of the old mesh (common for two meshes)

- Additional nodes of the new mesh
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Fig.7. 7: Set of regular meshes 
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At first stage, the exact solution for the mesh no.1 is obtained. In the present example, one uses the 
classic three-nodes difference operators 
 

0 1 2
( )2
1

0 2

2
16

322
0

L

w w w
w

w w

− + = → = −
 = =

       (7.26) 

 
Prolongation is performed by means of the FD collocation technique, at new nodes of the mesh no.2, 
but using only one new node in the FD star. 
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                              (7.27) 

 

Remaining nodal values , at nodes common for both meshes, remain the same. Namely ( )
1 1

Lw w= . 

Above relationships (7.27) may be written in the matrix notation 
 

3
( )

1 1

4

1
102

1 0

1 38

2

L

w

w w

w

 
    
    = ⋅ +    
    −    
 

                     (7.28) 

 
By substituting (7.26) into (7.28), one obtained prolonged solution from mesh no.1 to mesh no.2 
 

3

1

4

1
10 62

1 ( 32) 0 32

1 38 54

2

w

w

w

 
  −     
      = ⋅ − + = −      
      − −      
 

                    (7.29) 

 
Examination of the solution (7.29) quality may be performed by the evaluation of the residual defect 

on mesh no.2, namely ( ) , 3,1,4L
i i ir Lu f i= − = . 

 
( )

3 3
( )

1 12
( )

4 4

2 1 0 20
1

1 2 1 16
1

0 1 2 76

L

L

L

r w

r w

r w

  − −     
       = ⋅ − ⋅ −       
       −      

                   (7.30) 

 
and substitution of (7.29) into (7.30) 
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( )
3
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1
( )

4

0

12

0

L

L

L

r

r

r

   
   = −   
     

                      (7.31) 

 
Restriction from mesh no.2 to mesh no.1 requires MFD discretization of  
 

(i) Virtual work on the mesh no.1  ( )
1 1 12 LW r v= ⋅ ⋅  

(ii) Virtual work on the mesh no.2   ( ) ( ) ( )
2 3 3 1 1 4 41 1 1L L LW r v r v r v= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  

 
Here  , 1,3,4iv i =  denote non-zero nodal variations. Relation between the variations on those 

meshes may be obtained from the prolongation formula (7.28) 
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1 1
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v v

v
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                       (7.32) 

 
Assuming 1 2W W= , one obtains the sought restriction formula 

 

( ) ( ) ( ) ( )
1 3 1 4

1 1
2

2 2
L L L Lr r r r⋅ = ⋅ + + ⋅                     (7.33) 

 
due to arbitrary value of the variation 1v . It may be also written in the matrix form 

 
( )

3
( ) ( )

1 1
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4

1 1 1

4 2 4

L

L L

L

r

r r

r

 
  = ⋅      
 

                     (7.34) 

 
Substituting (7.31) into (7.34), one obtains the defect value restricted to the mesh no.1 
 

( )
1

0
1 1 1

12 6
4 2 4

0

Lr

 
   = ⋅ − = −    

  

                    (7.35) 

 

which allows for obtaining the equivalent low order solution correction (7.20) ( ) , 0,..., 4L
iw i∆ =  on 

that mesh, using the equation (7.26) 
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2
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L
L

L

w w w
r

w

w w

∆ − ∆ + ∆ = = − → ∆ =
∆ = ∆ =

                  (7.36) 

 
The correction (7.36) is then prolonged, using formula (7.28), to the mesh no.2. 
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( ) ( )
3 3
( ) ( )
1 1
( ) ( )
4 4

1

2
1

1 0
2

1

2

L L

L L

L L

w r

w w

w r

 
    ∆
    ∆ = ⋅ ∆ −    
    ∆    
 

                    (7.37) 

 
The solution corrections (7.37) may be found, by substituting there correction (7.36) and residuals 
(7.31). Finally, they are added to the previously prolonged solution (7.29), corresponding to the 
residual defect (7.31) 
 

( ) ( )
3 3 3
( ) ( )
1 1 1
( ) ( )
4 4 4

6 6 12

32 12 44

54 6 60

L L

L L

L L

w w w

w w w

w w w

   ∆ − −       
          = − ∆ = − − = −          
          ∆ − −          

                  (7.38) 

 
The above solution (7.38) is exact for mesh no.2, which means that the same result may be obtain 
directly by solving the SLAE  , 3,1,4i iLw f i= = , for this mesh namely 

 
( ) ( )

3 3 3
( ) ( )

1 1 12
( ) ( )

4 4 4

2 1 0 20 12 0.80
1

1 2 1 16 44 0.92
1

0 1 2 76 60 0.95

L T

L T

L T

w w w

w w w

w w w

   − − −       
          ⋅ − ⋅ = → = − =          
          − −          

    (7.39) 

 
The above solution was found by assuming the 2nd approximation order, therefore it exhibits the non-

zero error, when compared to the true nodal results ( ) , 1,3,4T
iu i = . In the standard multigrid approach 

it may be raised by applying new HO MFD operator (Hackbush, [29]). In Fig.7.8, presented is such 4th 
order MFD operator, which may be applied for the mesh no.2 
 

0 1 2

( ) 0 3 1 4 2
1 1 2

16 30 16
''

12
H w w w w w

w L w
h

− + − + −≈ =
⋅

3 4

h h h h

0 1 2

( ) 0 3 1 4 2
1 1 2

16 30 16
''

12
H w w w w w

w L w
h

− + − + −≈ =
⋅

3 4

h h h h

 
Fig.7. 8: HO FD operator 

 
However, an idea of the MFD HO approach considered  is using of the same low order MFD 

operator once again, but this time enriched by additional terms assuring precision within the 
polynomial order assumed, here the 4th one. As it was shown in previous Chapters, those additional 
terms come from the development of the nodal coefficients of the MFD operator into the Taylor series, 
with respect to the central node of the considered MFD star. They consist of the Higher Order 
derivatives (up to and including the 4th order here), as well as singularities and jump terms of the 
function and/or its subsequent derivatives. 

 
The appropriate HO correction terms, for the MFD operators on the mesh no.2, are  
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20 3 1
3 3 32

23 1 4
1 1 12

21 4 2
4 4 42

2 1
1

1 12
2 1

1
1 12
2 1

1
1 12

IV

IV

IV

w w w
Lw w

w w w
Lw w

w w w
Lw w

− +− ∆ = − ⋅ ⋅

− +− ∆ = − ⋅ ⋅

− +− ∆ = − ⋅ ⋅

       (7.40) 

 

Their evaluation was presented in Chapter 3. Higher order derivatives (here only , 3,1,4IV
iw i = ) in 

the MFDM approach, may be calculated by 
 

(i) an appropriate formulae composition inside the domain and use of the previous, low order 
solution, as well as by 

(ii) use of differential equation from the domain but addtionally enforced on the domain 
boundary. 

The problem of effective approximation on the boundary was presented in details in Chapter 4. 
 

0 3 1 3 1 4
0 2 2

0 3 1
3 2 2

2 2
2

2 1 1
1 1

II II II
IV

w w w w w w
f

w w w
w

− + − +   − +   − +    = =  

0 3 1 3 1 4 1 4 2
2 2 2

3 1 4
1 2 2

2 2 2
2

2 1 1 1
1 1

II II II
IV

w w w w w w w w w
w w w

w

− + − + − +     − +     − +     = = =  

 

3 1 4 1 4 2
22 2

1 4 2
4 2 2

2 2
2

2 1 1
1 1

II II II
IV

w w w w w w
f

w w w
w

− + − +   − +  − +   = =            (7.41) 

 
hence  
 

( )3

1

4

32 2 20 16 24

20 2 16 76 24

16 2 76 160 24

IV

IV

IV

w

w

w

= − − ⋅ − + =

= − − ⋅ + =

= − ⋅ + =

        (7.42) 

 
The HO correction terms values (7.40) are found afterwards 
 

3 1 4 2∆ = ∆ = ∆ =                       (7.43) 

 
The modified residual defect is found next using the HO correction terms 

, 3,1,4i i i ir Lw f i= − − ∆ = . 

 
( ) ( )

3 3
( ) ( )

1 12
( ) ( )

4 4

2 1 0 20 2
1

1 2 1 16 2
1

0 1 2 76 2

H L

H L

H L

r w

r w

r w

   − −     
        = ⋅ − ⋅ − −        
        −        

                  (7.44) 

 
The residual values (7.44) are found using the low order solution (7.38) 
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( )
3
( )

1
( )

4

2

2

2

H

H

H

r

r

r

  − 
   = −   
   −  

                                   (7.45) 

 
Residuals (7.45) are restricted then to the mesh no.1, using the (7.34) 
 

( )
3

( ) ( ) ( )
1 1 1

( )
4

2
1 1 1 1 1 1

2 2
4 2 4 4 2 4

2

H

H H H

H

r

r r r

r

  − 
      = ⋅ → = ⋅ − = −            −  

                (7.46)

  
The equivalent solution correction is obtained on the mesh no.1 
 

( )
( )0 1 2

( )12
1

0 2

2
2

42
0

H
H

H

w w w
r

w

w w

∆ − ∆ + ∆ = = − → ∆ =
∆ = ∆ =

                  (7.47) 

 
and later it is prolonged to the mesh no.2, in the same way as in (7.37) 
 

( ) ( )
3 3
( ) ( )
1 1
( ) ( )
4 4

1

2
1

1 0
2

1

2

H H

H H

H H

w r

w w

w r

 
    ∆
    ∆ = ⋅ ∆ −    
    ∆    
 

                    (7.48) 

 
The correction (7.48) value is obtained by substituting (7.47) and (7.45) there  
 

( )
3
( )
1
( )
4

1
2 32

1
1 4 0 4

2
1 2 3

2

H

H

H

w

w

w

 
  ∆ −   
      ∆ = ⋅ − =      
      ∆ −      
 

                    (7.49) 

 
This time, the solution correction (7.49) implicates from raising approximation order from 2nd to 4th. 
The final Higher Order solution for mesh no.2 is obtained by adding (7.49) to (7.38) 
 

( ) ( ) ( )
3 3 3
( ) ( ) ( )
1 1 1
( ) ( ) ( )
4 4 4

12 3 15

44 4 48

60 3 63

H L H

H L H

H L H

w w w

w w w

w w w

     ∆ − −     
           = − ∆ = − − = −           
           ∆ − −          

                  (7.50) 

 
In the considered example, this is also the exact analytic result , because the it is expressed by the 4th 
order polynomial. 
 
7.7.2 Cantilever beam 
 
Test problem no.2 (Fig.7.9) was considered in the following formulation 
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''( ) (2 ) (0,4),

(0) 0, '(0) 0

P
w x l x x

EJ
w w

= − ∈

= =
                    (7.51) 

 
with  1, 1, 1EJ P l= = = .  
 

P

2l

x

y, w

w(x)

 
Fig.7. 9: Cantilever beam under concentrated force - test no.2 

 
Two regular meshes are considered, with 3 and 5 nodes respectively (Fig.7.10). For both meshes, the 
natural boundary condition (for the deflection angle) was discretized using a fictitious external node 
and the central MFD operator 
 

• For mesh no.1  1

1

1
0 10

2 1
fI

f

w w
w w w

−
≈ = → =

⋅
, 

• For mesh no.2  3

3

3
0 30

1
2

2

fI
f

w w
w w w

−
≈ = → =

⋅
. 
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h = 0.5 h = 0.5

1 2
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3 4
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2
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y, w

w(x)

1
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f3
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Fig.7. 10: Two regular meshes for the cantilever beam 
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Low order solution, exact for the mesh no.1 
 

1 0 1
2 ( )

0

( )0 1 2
12

( )
2

0

2
2

1 0
2

1 1
1

30

L

L

L

w w w

w
w w w

w

ww

− + =
 =
− + = → = 

  ==



                    (7.52) 

 
Prolongation from the mesh no.1 to the mesh no.2 (collocation at nodes 3 0.5x =  and 4 1.5x = ) 

 

( )2
0 3 1 ( )

3 1

0

3
2 2 1 3

2
2 160

Lw w w
w w

w

 − + = → = −
 =

                         (7.53a) 

( )2 ( ) ( )
1 4 2 3 1 2

1 1 1 1
2 2

2 2 2 16
L Lw w w w w w− + = → = + −                (7.53b) 

 
By completing the above formulas with the identity relations at the nodes common for both meshes, 
one may determine the prolongation operator between those two meshes 
 

3

( )
1 1

( )
4 2

2

1 0 3

2 0 01 1

1 1 12 16

0 2 0

L

L

w

w w

w w

w

     
           = ⋅ −       
     

    

                    (7.54) 

 
Prolonged solution from the mesh no.1 to the mesh no.2 
 

3

1

4

2

1 0 3 5

2 0 1 0 161 1 1

1 1 3 1 312 16 16

0 2 0 48

w

w

w

w

       
       

        = ⋅ − =         
       

      

                   (7.55) 

 
Residual defect calculation on the mesh no.2 
 

( )
30

( )
123

( )
41

( )
24

2 0 0 0 4 1

2 1 0 0 3 01 1
2

1 2 1 0 2 02 2

0 1 2 1 1 0

L

L

L

L

wr

wr

wr

wr

        
        −        = ⋅ − =
        −
        −         

                  (7.56) 

 
Restriction from the mesh no.2 to the mesh no.1 and residual defect on the mesh no.1 
 

( ) ( )
1 0 0 1 1

1

2
L LW r v r v= ⋅ ⋅ + ⋅ ,  
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( ) ( ) ( ) ( )
2 0 0 3 3 1 1 4 4

( ) ( ) ( ) ( )
0 0 3 1 1 1 4 1 2

( ) ( ) ( ) ( ) ( )
0 0 1 3 1 1 4 2 4

1 1 1 1

4 2 2 2
1 1 1 1 1 1

( )
4 2 2 2 2 2

1 1 1 1 1
( ) ( )

4 4 2 4 4

L L L L

L L L L

L L L L L

W r v r v r v r v

r v r v r v r v v

v r v r r r v r

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + =

= + + + +

                 (7.57) 

1 2W W= →

( )
0

( ) ( )
0 3

( )( )
11
( )

4

1

2 0 0 0 2 0 0 0 0 11 1 1 1

0 1 2 1 0 1 2 1 0 04 4 2 4

0

L

L L

LL

L

r

r r

rr

r

   
             = ⋅ = ⋅ =                      
    

 

 
Correction evaluated on the mesh no.1 
 

( ) ( ) ( )
1 0 1

( )2
0

( ) ( ) ( )
( )0 1 2
12

( )
( )0
2

2 1
01 4

2 1
0

1 8
10
4

L L L

L

L L L
L

L
L

w w w
w

w w w
w

w w

∆ − ∆ + ∆ = ∆ =
 ∆ − ∆ + ∆ = → ∆ = 
 
 ∆ = ∆ = 

                  (7.58) 

 
Correction prolonged to the mesh no.2 
 

( )
3

( )( ) ( )
31 1

( ) ( )
4 2

( )( )
42

01 0 1 0 0 1

2 0 2 0 1 0 21 1 1 1 1 1 1
01 1 1 1 2 0 32 8 2 8 8 2 16

0 2 0 2 0 4

L

LL L

L L

LL

w

rw w

w w

rw

 ∆         
           ∆ ∆            = ⋅ − = ⋅ − ⋅ =             ∆ ∆   
          ∆           

                      (7.59) 

 
Final correction of the previously prolonged solution (7.55) - low order solution, exact for the mesh 
no.2 
 

( ) ( ) ( )
33 3 3

( ) ( ) ( )
11 1 1

( ) ( ) ( )
44 4 4

( ) ( ) ( )
22 2 2

5 1 4 1.09

16 2 14 1.051 1 1

31 3 2816 16 16 1.04

48 4 44 1.03

L L T

L L T

L L T

L L T

ww w w

ww w w

ww w w

ww w w

    ∆       
           ∆          = − = − = =
          ∆
          ∆              




 
 
 
 

   (7.60) 

 
Higher Order correction terms for the boundary MFD operator - the mesh no.2 
 
Development into the Taylor series 
 

( )

( )
( )3

3

0 0 0 0 0 3 0
3

0 0 0 0

0 0 0 0 0 0

1 1 1 1
' '' ,...

12 8 48 384 ' ,...
1 1 1 1 1 242 ' '' ,...
2 2 8 48 384

III IV V

f III V
b

III IV V
f

w w w w w R ww w
L w w w R w

w w w w w R w

 + + + + +− = = = + +
⋅ − + − + +
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hence 
 

33( )
0 0 0

1
1 242
2

fb III
b

w w
L w w

−
− ∆ = − ⋅

⋅
                              (7.61a) 

 
Higher Order correction terms for the domain MFD operator - the mesh no.2 
 

( )
( )

( )

( )

3

2
0 0 0 3 02

2
3 3 0 3 1 32

2
1 1 3 1 4 12

2
4 4 1 4 2 42

1 1
2 2

12 2
1 1

2 2
12 2
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2 2
12 2
1 1

2 2
12 2

IV
f

IV

IV

IV

Lw w w w w

Lw w w w w

Lw w w w w

Lw w w w w

− ∆ = − + −

− ∆ = − + −

− ∆ = − + −

− ∆ = − + −

               (7.62b) 

 
Evaluation of the Higher Order derivatives (formulae composition, expressing boundary derivatives in 
terms of the internal nodes,  use of differential equation) 
 

( ) ( )

( )

0 3 3 3 3

1 0 0 3 1
2

0 3

1

1 3 1 4

1

4 1 4

1 1

2 2
21 3

1 2 2 2 2 1 1
1 2 212
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4 2 2 1 0
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1 3 1
2 4 2 1 0

2 2 2

1
2
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II IIIII III IV I II

II II II II II
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IV II II II
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w w w w w

w w w w w

w w

w w w w

w w w w

−

−

= − = − =

− − +  = − = − − ⋅ − + = 
  ⋅

 
 

 = = ⋅ − + = 
 

   = − + = − ⋅ + =   
   

 = − + 
 

( )2

1
4 1 2 0 0

2
II  = − ⋅ + = 

 

                (7.62) 

 
Evaluation of the Higher Order correction terms (7.61) 
 

( )
0 0 1 2 3

1
, 0

24
b∆ = − ∆ = ∆ = ∆ = ∆ =                                (7.63) 

 
The improved MFD representation of the natural boundary condition 
 

2

2

3( )
0 0 0 3

1 1
1 24 242
2

fb
f

w w
Gw g w w

−
= + ∆ = = − → = +

⋅
                 (7.64) 

 
Residual defect calculation on the mesh no.2 
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( ) ( )
0 3
( ) ( )
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1 4
( ) ( )
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2 1 0 0 2 01 1
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0 1 2 1 4 0
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        −        = ⋅ − =
        −
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                  (7.65) 

 
Residual defect on the mesh no.1 
 

( )
0

( )
1

1

2 0 0 0 0 11 1 1

0 1 2 1 0 04 6 12

0
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H
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r

 
       = ⋅ =            
 
 

                   (7.66) 

 
Correction evaluated on the mesh no.1 
 

( ) ( ) ( )
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 ∆ = ∆ = 

                  (7.77) 

 
Prolonged correction to the mesh no.2 
 

( )
3

( )( ) ( )
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( ) ( )
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( )( )
42

01 0 1 0 0 1
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w
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 ∆         
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                 (7.78) 

 
The correction of the previous, low order solution (7.60) for the Higher Order solution, exact for the 
4th order polynomial 
 

( ) ( ) ( ) 2
33 3 3

( ) ( ) ( ) 1
31 1 1

( ) ( ) ( )
4 4 4
( ) ( ) ( ) 2

32 2 2

35 1 11

1316 2 401 1 1 1
2731 3 8116 48 16 48

4248 4 128

H L H

H L H

H L H

H L H

w w w

w w w

w w w

w w w

       ∆      
           ∆           = − = − = =
           ∆
           ∆                







                           (7.79) 

 
The above solution is also the exact analytical result, because the last one is the polynomial of the 3rd 
order. 
 
Analysed were 1D tests, with different types of boundary conditions (essential, natural). They proved 
correctness of the non-adaptive multigrid approach, proposed in [51, 75] and extended here for use of 
the Higher Order approximation, provided by correction terms.  
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7.8 Adaptive multigrid solution approach with HO approximation 
 

As opposite to the non-adaptive multigrid solution approach with the HO approximation 
considered above, adaptivity is applied here [75]. Solution procedure is combined with simultaneous 
design of subsequent meshes. It is based on the results of an a’posteriori error analysis, especially on 
the improved estimation of the true residual error. Therefore, sufficiently precise Higher Order 
solution is needed not only on the finest mesh, but also on all intermediate ones. This solution is 
applied then to Higher Order estimation of the residual error at points being the candidates for 
insertion of new nodes. 

 

S P

12p 21r
1

2 D
Si iLu f=

HD
i i iLu f= + ∆

S- exact solution for the given mesh

D - defect of the FD equation

P - correction yielded on the given mesh

H – HO solution for the corrected FD equation

12p 21r 12p

D

23p 23r

21r 12p

23p

D
Si iLu f=

A

23r

21r

A

H

A – adaptation / error analysis

3

i iLu f≠
i i iLu f≠ + ∆

i iLu f≠
i i iLu f≠ + ∆

 
Fig.7. 11: Adaptive multigrid solution path 

 
 The following steps of the general solution approach are needed then 
 

(i) design  and generation of  an initial (basic) coarse mesh, 
(ii) generation of the mesh topology (Voronoi polygons, Delaunay triangles in 2D), for the 

current mesh 
(iii) selection of MFD stars for this mesh 
(iv) generation of the MFD formulas for Du  (complete set of low order derivatives) and by 

means of the MWLS approximation for all meshes; use of these formulae for composition 
of Lu  (a difference operator, corresponding to differential operators, appearing in the 
boundary value problem formulation), 

(v) derivation of the Higher Order correction terms, ∆ , corresponding to the Du  and Lu , 
for the current mesh, 

(vi) generation of the MFD equations, for the current mesh, depending on the problem 
formulation, 

(vii) imposing of the boundary conditions for the current mesh, 

(viii) solution of ( )LLu f=  for the basic mesh, and obtaining the low order solution ( )Lu , exact 
for that mesh 

(ix) evaluation of the correction terms ∆ , for the basic mesh 
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(x) solution of ( ) ( )H LLu f= − ∆  for the basic mesh, and obtaining the Higher Order solution 
( )Hu , by means of the HO solution smoothing, 

(xi) one level denser mesh generation, with proposed localisation of  new nodes, 
(xii) generation of the MFD operators Lu  and derivation of the ∆  terms at points being 

candidates for new nodes insertion, 

(xiii) a’posteriori residual error evaluation ( ) ( ) ( )H H Hr Lu f= − ∆ −   at points being candidates 
for new nodes insertion, and acceptance of those, where residual error exceeds its 

admissible value  ( )H
admr η≥ ; additional nodes generation criteria may be also applied 

and satisfied here, 

(xiv) solution ( )Lu  prolongation to the new mesh, in a way depending of number on the new 
nodes in the MFD star; simple explicit formula (7.3) may be used in the case when the 
MFD star consists of one new node only; smoothing iterations may be needed, if the MFD 
star contains more than one new node (7.4), 

(xv) optional smoothing steps and residual error calculation  ( ) ( )L Lr Lu f= −  for the new 
mesh, 

(xvi) residuum ( )Lr  restriction to the basic mesh, 

(xvii) solution correction calculation ( )( ) ( )L LL u r∆ =  for the basic mesh, 

(xviii) solution correction ( )Lu∆  prolongation to the new mesh, 

(xix) final correction of the low order solution ( )Lu  for the new mesh, 

(xx) evaluation of the correction terms ( )L∆  for the new mesh, 

(xxi) optional smoothing steps and residual error calculation  ( ) ( ) ( )H L Lr Lu f= − ∆ − , 

(xxii) repetition of the steps (xvi) – (xviii) for the residuum ( )Hr , 

(xxiii) final correction of the Higher Order solution ( )Hu  for the last mesh, 
(xxiv) repetition of steps (xxi) – (xxiii) until convergence is reached, 

(xxv) repetition of steps (xi) – (xxiv) until sufficient solution precision ( )H
admr η≥  is reached 

in the proposed new nodes locations of the next mesh (corresponding to the step (xiii)), 
(xxvi) final postprocessing of the results performed on the last mesh. 
 

The above proposed solution steps may be also presented in the form of the adaptive solution path 
(Fig.7.11). Here, for the sake of simplicity, smoothing iterations are omitted. They may be needed, if 
the MFD star, used in prolongation procedure, contains more than one new node. However, smoothing 
iterations may be performed simultaneously with the HO iterations, improving the HO solution. The 
whole algorithm of the multigrid adaptive solution approach with the HO approximation is presented 
in the form of the flow chart in  Fig.7.12. 
 
7.9 Numerical examples 
 

The above proposed algorithms of the non-adaptive, and adaptive multigrid solution 
approaches with the HO approximation were applied in the series of 1D and 2D numerical tests. Sets 
of regular and irregular meshes were generated for different types of the boundary value problems. 
Those results were presented in the previous Chapters. Especially valuable mentioning are the sets of 
strongly irregular meshes for the 1D benchmark problems (3.31), generated using the HO estimation 
of the residual error. MFD solutions on those meshes were obtained with the full application of the 
multigrid approach. Some of those results are presented below. 
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enter data, domain,
formulation, method
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Generation of MFD equations, discretization of 
boundary conditions
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Fig.7. 12: Flow chart of the adaptive multigrid solution approach with the HO approximation 

 
 
 
 
 
 
 



 186 

(i) 20 meshes generated for the 1D boundary value problem no.2 (3.33) (Fig.7.13) 
 
 
 

 
Fig.7. 13: Set of  20 irregular meshes, generated for the 1D benchmark problem no.2 
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(ii) 20 meshes generated for the 1D boundary value problem no.3 (3.34) (Fig.7.14) 
 
 
 

 

 
Fig.7. 14: Set of  20 irregular meshes, generated for the 1D benchmark problem no.3 

 
For better comparison, and justification of the nodes concentration zone presented are the exact 
analytical solutions as well as the right hand side functions of the differential equations, for both 1D 
benchmark problems (Fig.7.15). 
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Fig.7. 15: True analytical solutions and right hand side functions - 1D benchmark problems 

 
Comparison of the solution time between standard and multigrid solution approaches was investigated. 
Two various situations were examined: HO multigrid approach on regular meshes (5, 9, 17, 33, 65, 
129, 257 nodes,... - Fig.7.16), and adaptive HO multigrid approach (Fig.7.17). Calculations were 
performed for the 1D benchmark no.3. 
 
In every case multigrid approach speeded up the FD analysis. Results show potential power of the 
multigrid approach in order to reduce the computational time involved in the analysis of large 
boundary value problems. 
In the case of regular meshes (non-adaptive multigrid solution approach) tested the speed up factor for 
the solution time was 
 

45.69STANDARD

MULTIGRID

t
T

t
= =            (7.80) 

 
and in the case of irregular meshes (adaptive multigrid solution approach) the speed up factor for the 
solution time was 

10.12STANDARD

MULTIGRID

t
T

t
= =            (7.81) 

 
One should realise that the solution time, in case of multigrid approach, strongly depends on the 
software and hardware type used. Effective implementation of the algorithms as well as use of parallel 
computing may additionally increase the speed up factors (7.80) and (7.81). Moreover, significant 
achievement of solution time is specially expected when dealing with larger numbers of unknowns. 
 
7.10 Final remarks 
 

A new adaptive and non-adaptive multigrid HO solution approach developed in order to 
analyse boundary value problems is presented. Solution process includes original concepts of higher 
order approximation, a’posteriori error estimation, solution smoothing, mesh generation, and 
modification as well as an adaptive multigrid solution procedure [51, 75, 85, 92, 93, 94, 95, 96, 100]. 
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The Higher Order approach is based on the Taylor series expansion and use of relevant 
correction terms rather than on adding new nodes into the MFD operators. The approach seems to be 
very effective – it needs two steps, using the same basic MFD operator. Quality of the final MFD 
solution depends only on the truncation error of the Taylor series. HO approximation terms may be 
used not only to improve the solution quality but also to refine estimates of solutions and residuals. 
Those estimates are used in the adaptive mesh generation. Local error indicators are proposed and used 
to examine the convergence rate of the relevant quantity. 
 

standard approach

multigrid
approach

solution
time

meshes

set of regular meshes

 

Fig.7. 16: Comparison of computational time for the HO standard and HO adaptive multigrid 
solution approaches for regular meshes 

 

multigrid
approach

solution
time

meshes

standard approach

set of irregular meshes

 
Fig.7. 17: Comparison of computational time for the HO standard and HO adaptive multigrid 

solution approaches for irregular meshes 

 
 Used were original concepts of the prolongation and restriction, applied to both types of 
approximation, the standard MFD operator as well as the improved one, with additional correction 
terms. The multigrid approach effectivity was positively tested on an adaptive process reducing 
computational time needed to analyse a boundary value problem on every step of adaptation.  
 However, so far only 1D and 2D simple linear benchmark problems were solved, using the 
above approach. Knowledge of the true analytical solution allowed for examination of the solution 
error estimates as well as for the MFD solutions obtained during the multigrid cycle. In the following 
Chapter, some more sophisticated problems will be analysed, with a non-linearity of geometrical 
nature. Moreover, some less typical applications of the approach will be presented, namely reliability 
of the structure estimation, engineeering analysis of railroad rail as well as analysis of the beam 
deflection using the fuzzy sets approach. 
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8. Chosen applications in mechanics 
 

8.1 Introduction 
 

In the previous Chapters, presented was the general MFDM solution approach for analysis of 
the boundary value problems. It uses original concepts of the Higher Order approximation, providing 
the correction terms for the MFD operators. Those correction terms, when evaluated in the accurate 
manner, may significantly improve the following aspects of the MFDM solution approach 

 
(i) MFD approximation in the domain, 
(ii) MFD approximation on the domain boundary, 
(iii) taking into the account jumps and singularities of the function and/or its derivatives, 
(iv) improvement of the MFDM solutions quality; 
(v) improvement of the MFDM solutions effectiveness; 
(vi) a’posteriori solution and residual errors estimation, defined in the both local and 

global forms, 
(vii) residual based generation criteria of new nodes in the h-adaptation process, 
(viii) the multigrid solution technique. 

 
One of the most interesting features of the HO approach seems to be a possibility for obtaining 
MFDM solutions of much better quality, for the same cloud of nodes at non-significant additional 
computational cost. 

A variety of 1D and 2D benchmark examples, posed in the local and/or global formulations, 
were executed in order to test the HO MFDM algorithms. Those concepts were integrated and applied 
in the adaptive multigrid solution approach, using the HO approximation. Final tests concerned 
capability of the approach to high quality h-adaptive mesh refinement. Knowledge of the exact 
analytical solution allowed for examination of the tested features of the approach. The results are very 
encouraging, and show potential power of the approach, though tests executed so far were rather of 
very simple nature. In this Chapter, some slightly more sophisticated problems, though applied to very 
simple structures, will be analysed, starting from typical problem of the linear and non-linear 
mechanics [121]. Presented will be 
 
a. 1D tasks 
 

(i) non-linear analysis [58, 119] of the simply supported and cantilever beams [72], with 
a) non-linear constitutive law [121] (physical non-linearity), 
b) large deflections [58] (geometrical non-linearity), 

(ii) analysis of a beam deflection, based on the fuzzy sets approach [67] and on the 
MFDM algorithms [75], 

(iii) estimation of the reliability [38, 39, 79] of a simple 1D structure, 
 
b. 2D tasks 

 
(iv) stress analysis in 

a) a square prismatic bar 
b) a railroad rail 

subjected to pure torsion, 
(v) non-stationary heat flow in a railroad rail, subjected to cooling process. 

 
 
In the first tests (i), solved were simple non-linear b.v. problems. However, the main goal of these tests 
is to present the possibility of the HO correction terms integration into the standard iterative solution 
approach of a non-linear problem. Moreover, the successive over-relaxation method is applied, in 
order to speed up the iteration process. New concepts of evaluating the relaxation parameter are 
proposed [97, 101]. They are expected to provide the significant solution convergence and calculation 
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time improvement, when compared with the standard acceleration techniques. The following two tests 
(ii) – (iii) are 1D problems of rather simple nature as well. However, the discrete analysis of those tests 
requires multiple solving of boundary value problems. Therefore, effective and fast numerical tool is 
needed.  
The MFDM approach may be used in variety of engineering applications. The 2D problems (vi) – (vii) 
present some chosen examples of such numerical analysis. Especially, the railroad rail analysis may be 
treated as part of larger research, focused on the analysis of the residual stresses [36, 41, 86, 99]. 
Those simple tests give hope how much could be gained towards effective solving more sophisticated 
2D and 3D problems, when using the MFDM with HO approximation. 
 

8.2 1D non-linear analysis 
 

The non-linearity in mechanics [58, 121] may have two main sources, namely geometrical 
(e.g. large  deformations, large strains) and physical ones (e.g. non-linear constitutive law). In the 
present section, the general MFDM solution approach for analysis of the non-linear boundary value 
problems is presented. The quality of the MFD approximation may be raised by considering HO 
correction terms. Those terms are involved in the standard MFD iterative solution approach, applied in 
the case of non-linear problems. Proposed is also a new concept of acceleration of the standard 
Newton – Raphson method [119], used for iterative solution of the Simultaneous Algebraic Equations 
(SAE). 

 
8.2.1 Problem formulation  

 
Consider the locally formulated boundary value problem 
 

in  

   on  b

u f

u g

= Ω
 = ∂Ω

L

L
                        (8.1) 

 
For linear problems, the differential operator L  may be presented in the form 
 

0 1 2 3( ) ' ' ' ...x y xxu a u a u a u a u= + + + +L                       (8.2) 

 
with functional coefficients ( ) , 0,1,...i ia a i= =x . The MFDM discretization leads to the 

Simultaneous Linear Algebraic Equations (SLAE) then. Such group of problems was considered in the 
previous Chapters.  
For the non-linear problems, the differential operator L  may be presented in the following general 
form 
 

( )

( )
( ) ( , ,..., )

p

p

u u
u F u

∂ ∂=
∂ ∂x x

L                        (8.3) 

 
Solution of (8.17) may be obtained then by the method of successive iterations, solving the appropriate 
SLAE on every step of calculations. 
In the most primitive method of simple iterations, one solves the linear problem, corresponding to 

(8.1) and (8.3), in which the derivatives values 
( 1)

( 1)
, ,...,

p

p

u u
u

−

−

∂ ∂
∂ ∂x x

 are evaluated from the previous 

iteration step. However, convergence of this method may be not sufficiently fast. 
Much faster are those methods, in which the values obtained from the SLAE are treated as the 
correction terms, added to the unknown function u. Among them, one may distinguish Newton – 
Raphson method and its numerous modifications. Their common feature is using of the tangent (or 
secant) incremental matrix, while they differ from each other in the manner of calculating the right 
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hand sides of the SLAE. The incremental matrix 
F

u

∂
∂

 is derived from the Taylor series expansion of 

(8.3) with respect to the unknown function  u 
 

0 0( ) ...
F F

u F u F u
u u

∂ ∂= + ∆ + ≈ + ∆
∂ ∂

L                       (8.4) 

 
where u∆  - corrections of the solution, and 0F  - result of the previous iteration step. In the Newton – 

Raphson method, the right hand side of the SLAE comes from the difference between the function f of 
the differential equation (8.1) and the current value of the left hand side of (8.1). The initial 
approximation is improved, during the iteration process, untill the final precision is reached. 
In the practical applications, the Newton – Raphson method is combined with the incremental 

approach, where the total non-homogeneity of the system is divided into ( )0n n>  increments (e.g. 

load increments). For each increment, the iterative Newton – Raphson is applied separately. Moreover, 
additional acceleration of the convergence may be obtained by using appropriate relaxation or the self-
correcting approach. The general incremental Newton – Raphson method with the correcting 

parameter ( )1.2 1.3α α = ÷  [53] may be given in the following form 

 

1 , 1,2,...,i i

F i f i f
u F i n

u n n
α −

∂ ⋅ ⋅ ∆ = − − = ∂  
                    (8.5) 

 

where 
F

u

∂
∂

 is the incremental Jacobian matrix (8.4), n – assumed number of increments, 1iF −  - left 

hand side value of (8.1), on the previous iteration step. The geometrical interpretation of (8.5) for 1D 
case is shown in Fig.8.1. 
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Fig.8. 1: Incremental Newton -Raphson method with the selfcorrecting approach 
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Evaluation of the incremental matrix (8.4)  may be performed in several ways. Among them one may 
distinguish 
 

(i) N-R method with the tangent incremental matrix, evaluated using analytical methods, 
(ii) N-R method with the secant incremental matrix, evaluated using numerical differentiation, 
(iii) Modified N-R, in which the incremental matrix is updated after several iteration steps, 
(iv) Initial NR, in which the incremental matrix is evaluated once for each increment, 
(v) N-R method, in which the incremental matrix has the diagonal form. 

 
In the MFDM analysis, symbolic derivation may be used for evaluating the tangent matrix on every k-
iteration step [44, 45, 53, 115], followed by application of the MFD formulas, generated by the means 
of the MWLS approximation,  
 

( ) ( )
( )

( 1) ( 1)( 1) ( ) ( ) ( 1) ( ) ( 1) ( 1)

( )
( 1)( 1) ( )

( )

( ,..., ) ( ,..., )

''
, ( ,..., ) ...

''

j j

j

k kk p k k p k k
u i i j u i i j i

p
k j j jk p i i i

u i i p
i j i j i j

F u u u F u u u f

F F Fu u u
F u u

u u u u u u

− −− − − −

−−

⋅ = ⋅ −

∂ ∂ ∂∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂ ∂

                 (8.6) 

 

Here differentiation  
( )

, 0,1,...,j

s
i

F
s p

u

∂
=

∂
 may be performed analytically, by symbolic operations, 

while derivatives 
( )

, 0,1,...,
s

j

u
s p

u

∂ =
∂

 come from an appropriate MFD formulae, generated and 

composed for the set of partial derivatives, at the basic stage of the approach. This approach was 
successfully applied in several systems, designed for the discrete analysis of the boundary value 
problems (e.g. FIDAM [53] and NAFDEM, [43, 45]).  
In the present work, the approach is used together with a new concept of acceleration of the NR 
convergence. Instead of using self-correcting method, with arbitrarily chosen coefficient α , the 
modified relaxation technique is proposed. 
In the most iterative methods, for both the SAE and SLAE, the constant relaxation parameter µ  is 
chosen in such a way as to minimise the spectral radius of the error dumping matrix [104]. Evaluation 
of such µ  is difficult, so it is obtained approximately, based on trial and error values of µ  and 

observing the convergence ( 1.2 1.4µ = ÷ ). In the proposed optimal relaxation method (Fig.8.2), 
proposed by J.Orkisz [101], and developed by J.Orkisz and author of the present work [97], the variant 

relaxation parameters ( ) ( ) ( )  or  ,k k kµ µ λ   are chosen in such a way that they minimise the relaxed 

residuum magnitude of the current solution ( )ˆ ku .  

 

( )( )
( )( )

( )( ) ( ) ( ) ( )

( ) ( ) ( 1)

( 1)( 1) ( 1) ( ) ( 1)

ˆ ˆ ˆ,...,
ˆ

,...,

kk k p k

k k k

kk k p k

F f

F f

−

−− − −

 = −


→ ∆ = −
 = −


r u u
r r r

r u u
                              (8.7) 

 
The relaxation parameter(s) is/are variable. In each iteration step their values are found by means of 
simple calculations. Two situations may be distinguish 
 

(i) one relaxation parameter ( )kµ  is found by minimising the magnitude  I  of relaxed residuum 
( )kr  of current solution 

 
( ) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( )ˆ( )k k k k k k k kµ µ ∆− − −= + − = +r r r r r r                    (8.8a) 
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( )( ) ( )ˆ ˆ
tk kI = r r                                     (8.8b) 

( )
( )

( )
( ) ( )

( ) ( ) ( 1) ( ) ( ) ( 1)
( ) ( ) ( )

ˆ
ˆ0 1

tk k

k k k k k k
tk k k

dI

d

∆
µ µ

µ ∆ ∆
− −= → = − → + −

r r
u = u u u

r r
    (8.8c) 

 

(ii) two relaxation parameters ( )kµ  and ( )kλ  are found after two iteration steps by minimising the 
modified residuum functional 
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and finally 
 

( ) ( )( ) ( 1) ( ) ( ) ( 1) ( ) ( 1) ( 2)ˆk k k k k k k kµ λ− − − −− −u = u + u u + u u        (8.9c) 
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Fig.8. 2: Search for the optimal relaxation 
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As it was shown in [97, 101], the relaxation discussed above may significantly raise the convergence 
rates of the iterative methods, and reduce the computational time.  
 
 
The convergence of the N-R iterative method should be controlled by estimating both the solution and 
residual errors 
 

( )( )
( )( )

( )( ) ( ) ( )
( ) ( 1)

? ?

( ) (0)(0) ( ) (0)

,...,
,

,...,

kk p k
k k

adm admk
p

F f

F f
ε ε ω ω

− −−
= ≤ = ≤

−

u uu u

u u u
               (8.10) 

 

Here, admε  and admω  denote the admissible error values, for solution and residuum respectively. 

 
In the MFDM solution approach, the non-linear analysis is integrated with the solution process. One 
may combine here the features of iterative procedures of the Newton – Raphson method (8.5) and 
smoothing of the HO solution. Both methods deal with the same coefficient matrix of the set of MFD 
equations, both with a modified right hand side vector. Their modification may include here 
 

(i) corrections derived from the NR method 
 

 ( )( 1)( ) ( 1) ( ) ( 1) ( 1)( ,..., )
j

kk k p k k
ij u i i j iF u u u fδ

−− − −= ⋅ −                  (8.11) 

 
(ii) optimal relaxation of the solution, with use of one parameter (8.8), or two parameters (8.9) 

 
(iii) corrections derived from the Taylor series expansion of the MFD operator value 
 

( 1) (2 )
( ) ( )

( 1) (2 )
,...,

p p
k k

ij ij p p

u u+

+

 ∂ ∂∆ = ∆  ∂ ∂ x x
                   (8.12) 

 
evaluated by using appropriate formulae composition. 

 
The rough derivatives, derived from the MWLS approximation without correction (8.12), are 
evaluated only for the first iteration of the N-R algorithm. On the next iterative steps, each MFD 
formula is improved by its appropriate corrections, which are consequently added to the right hand 
sides of the SLAE. Higher Order derivatives values (8.12) are upgraded in the same time as the 
corrections (8.11) are getting smaller and smaller. The convergence is controlled by the (8.10) criteria.  
 
The whole solution algorithm, which deals with non-linear MFDM analysis on the single mesh, is 
presented in Fig.8.3 in the form of the flow chart. 
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Fig.8. 3: The non-linear MFDM solution approach 

 
8.2.2 Preliminary tests 

 
Algorithm proposed above was tested on the simple 1D benchmark test, dealing with the large 
deflections of the simply supported beam under uniform loading (Fig.8.4). Mainly investigated were 
 

(i) solution and residual convergence of the iterative method, 
(ii) influence of the relaxation parameter on the iterations number. 

 
In the theory of the large deflections, the governing differential equation may be written in the form 
 

( )2 3/ 2

''( ) 1
,

[1 ( '( )) ] 2

(0) ( ) 0

L

L

w x
qx x x

w x EJ

w w x

= −
+

= =
                   (8.13) 

 
where Lx  denotes the location of the sliding support, on the right end of the beam. In the present 

example, assumed was the constant beam length  L condition, which may be written in the integral 
form 
 

2

( ) 0

1 ( ')
L

L

ds w dx L= + =∫ ∫                      (8.14) 
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Fig.8. 4: Simply supported beam with large deflections 

 
After the MFD discretization with n nodes, the iterative procedure 
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may be applied to solve differential equation (8.13). Here, ( 1) , 1,2,...k
ix k− =  are nodes locations, 

( 1)' k
iw −  and ( )'' k

iw  are derivatives values, obtained using the MWLS approximation, ( 1)' k
i

−∆  and 
( 1)'' k
i

−∆  are correction terms, corresponding to these derivatives. For relaxation purposes, the residuum 

of the current solution may be defined as 
 

( )
( )

( ) ( ) ( )
( ) 2 3/2

'' 1
, 1,2,...,
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+
                (8.16) 

 
In Fig.8.5 presented are results for load 20q =  and 100n = . The standard N-R and relaxed N-R 
(with one or two parameters) were applied. For each approach option, the final approximated solution 
is presented on the left, while on the right the solution and residual convergence is shown. The 
standard N-R, which is the fast tool by itself, required 324 iterations, while the relaxed ones reduced 
this number to 186 (with one parameter) and 116 (with two parameters). One may conclude, that it is 
worth to apply the relaxation procedure, which may significantly improve the convergence and reduce 
the calculation time. 
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Fig.8. 5: Comparison between three iterative approaches 

 
8.2.3 Simply supported beam with a non-linear constitutive law 

 
The simply supported beam, under concentrated force was considered (Fig.8.6). The boundary value 
problem was posed in the local formulation 
 

( ) ''( ) ( ), (0, ), (0) ( ) 0E w J w x M x x L w w L⋅ ⋅ = − ∈ = =                  (8.17) 
 
Assumed was a non-linear stress-strain relation ( )fσ ε= (Fig.8.7). 

The basic regular mesh was introduced, with n nodes , 0,1,2,..., 1ix i n= − . The following non-

linear algorithm was proposed in the adaptive MFDM analysis with HO approximation, provided by 
correction terms: 
 

L

y, w

x

P

 
Fig.8. 6: Simply supported beam  under concentrated load 
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e

s

 

Fig.8. 7: Non-linear constitutive law  ( )σ σ ε= , applied in calculations 

 
(i) division of the load (concentrated force P) into the defined number pn  of force increments 

P∆  
 
(ii) generation of the set of the MFD formulae up to the 2nd order, by means of the MWLS 

approximation with appropriate HO correction terms (up to the 4th order) at nodes 
, 0,1,2,..., 1ix i n= −  ( ( )m i  - number of nodes in the MFD star for the node ix , sjm  - MFD 

operator coefficients) 
 

( )
( )

( )
1

1,2 , 0,1,..., 1
m i

s s
i sj j i i

j

w m w s i n
=

≈ ⋅ − ∆ = = −∑ ,                (8.18) 

 
(iii) generation of the MFD equations inside the domain (here, by means of the collocation 

technique) 
 

( )

2, ( )
1

( ) (2)
(2)

2, ( )
1

(2)

, 1
, 1

,
, 1

, 1

( ) , 1
( ) , , 1,2,..., 2

( ) , 1

m i

j j i II
j iII

i i im i II
i i

j j i i
j

i

i i i i

i i i

m w k
w k

w Lw
w k

m w k

M x k
E f E J Lw i n

M x E J k

ε

ε

=

=


⋅ = − = ≈ = ≈ 

− + ∆ > ⋅ − ∆ >


− == ⋅ = = −
− + ∆ >

∑

∑           (8.19) 

 
(iv) enforcing the boundary conditions 0 1 0nw w −= = , 

(v) solution of the appropriate SLAE, 
(vi) evaluation of the solution derivatives (using the MWLS technique), corresponding to the strain 

and stress here, and their HO correction terms, 
 

 
(1) (2)

(2)

, , ,

,

I II III IV
i i i i i i

II
i i i i i i

w w w w

w Eε σ ε
→ → ∆ ∆

= − + ∆ =
                  (8.20) 

 
(vii) evaluation of the internal forces 
 

( )(2)
int,

II
i i i if E J w= ⋅ − ∆                     (8.21) 
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(viii) evaluation of the residual forces 
 

( )(2)
, int, , ( )II

res i i ext i i i i if f f E J w M x= − = ⋅ − ∆ +                  (8.22) 

 
(ix) solution of the SLAE for the sub-increment of the load 
 

, , 1,2,..., 2i i res i

i i i

E J L w f i n

w w w

⋅ ∆ = = −
= + ∆

                   (8.23) 

(x) relaxation of the solution 

(xi) repetition of steps (vi) – (x) as long as the results remain stable res admf ε≤  

(xii) a’posteriori estimation of the residual error, at the points between the neighbouring nodes, 
 

( )(2)''x x x x xr E J w M= ⋅ ⋅ − ∆ +                     (8.24) 

 
(xvi) nodes generation, in a specified number of new nodes locations, due to the appropriate 

improved residual error criterion, 
(xvii) repetition of the steps (ii) – (xvi), until the admissible residual error level is reached, 
(xviii) increase load by subsequent increment; repetition of steps (iii) – (xvii), until the total load is 

applied to the beam 
(xix) postprocessing of the final results. 
 
In the first test, examined was the regular mesh with 13 nodes. The total load value, 1P = , was 
divided into 10pn =  increments of 0.1P∆ =  value. In Fig.8.8 presented are: bending moment 

distribution, and nodal deflections, continued by means of the MWLS approximation, for the specified 
load increment 8 0.8P = . 

 

 
Fig.8. 8: Bending moment and beam deflection, while applying the load increments 
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In Fig.8.9, presented is convergence of the incremental-iterative N-R method, for the node loaded by 
the concentrated force (maximum deflection). 
 
A rough regular mesh with 13 nodes was used as a basic mesh for the solution and residual 
convergence estimation. Generated were 20 meshes, regular and adaptive irregular ones, according to 
the solution algorithm, given above. Results for regular meshes are presented in Fig.8.10, while 
Fig.8.11 and Fig.8.12 show results for irregular ones. 
 
In Fig.8.10 and Fig.8.11, presented are 
- the final mesh, with distribution of the residual error (solid line) and mesh density (dashed line), 

located on the bottom of the figures, 
- convergence of  the solution (on the left top), in the maximum (dots) and mean norms (triangles), 

in the logarithmic scale, 
- convergence of the residuum (on the right top) , in the maximum (dots) and mean norms 

(triangles), in the logarithmic scale. 
 
Complete set of irregular meshes is shown in Fig.8.12. 
 

 
Fig.8. 9: Incremental iteration approach results, for the deflection in the middle of the beam 

 
The convergence rates are presented in Tab.8.1. Three concentration zones may be observed, while 
dealing with the adaptive meshes (Fig.8.12), namely near the boundary and near the concentrated 
force. These results may be compared with the ones obtained using the regular mesh (Fig.8.10). 
Residual error distribution exhibits its largest values in the mentioned locations. 

 
regular meshes irregular meshes 

convergence rate 
mean maximum mean maximum 

solution 4.19 3.67 3.5 3.18 
residuum 1.86 1.38 1.87 1.67 

Tab.8. 1: Comparison of the solution and residual convergence rate between regular and 
irregular meshes 
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Fig.8. 10: Final regular mesh and convergence of  solution and residuum error distribution 
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Fig.8. 11: Final irregular mesh and convergence of  solution and residuum error distribution 



 203 

 
Fig.8. 12: Set of adaptive irregular meshes 

It is worth stressing that the error level on the irregular cloud of nodes (Fig.8.11) is smaller, when 
compared to results obtained for the set of regular meshes (Fig.8.10), with similar number of nodes. 
 

8.2.4 Cantilever beam with large deflections 
 
Test no.1 
 
Considered was large deflections problem of the cantilever beam, loaded with a concentrated moment 
M  (test no.1) and, in what follows, with a concentrated force P (test no.2). The boundary value 
problem, posed in the local formulation 
 

2 3/ 2

''( ) 1
( ), (0) 0, '(0) 0, (0, )

[1 ( '( )) ]

w x
M x w w x L

w x EJ
= − = = ∈

+
                (8.25) 

 
was transformed to the form, using the parametric notation ( ) , ( )x x s w w s= = , shown in Fig.8.13. 
This transformation was performed in order to allow very large for beam deflection analysed in all 

four sectors of the co-ordinate system ( 0,2s π∈ ). 

The parametric co-ordinates  
 

,
dx dw

x w
ds ds

• •
= =                       (8.26) 

 
allow for evaluating derivatives required in the differential equation (8.25) 
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.

3

1
' , '' ... ( )

dw ds w d dw
w w w x x w x

ds dx dx dxx x

•
•• • ••

• •
= ⋅ = = ⋅ = = ⋅ − ⋅                  (8.27) 

 
Therefore, the curvature, which appears in (8.25), may be presented in the following parametric form 
 

3 32 2
22 2

1 ''

1 ( ')( )

w x w x w

wx w
ρ

•• • • ••

• •

⋅ − ⋅= =
 ++  

                    (8.28) 

 

x

y, w

PEJ

L

x

w

xL

dsdw

dx
x x + dx

 
Fig.8. 13: Cantilever beam with large deflections 

 
After simplifying the denominator of (8.28) 
 

2 22 2 2 2 2

2 2
1

dx dw dx dw ds
x w

ds ds ds ds

• • +   + = + = = =   
   

                  (8.29) 

 
one obtains the parametric notation of the beam deflection problem for large deformations, equivalent 
to the form (8.25) 
 

32 2
2

( , )
( , )

0( )

w x w x f x w w f xw x w x
f x w

w w x x x f wx w

•• • • •• •• ••• • • ••

•• • •• • •• •• •

  ⋅ − ⋅ = = ⋅⋅ − ⋅  = → →  
  ⋅ + ⋅ = = − ⋅+  

                                   (8.30) 

 

where 
( , )

( , )
M x w

f x w
EJ

= − . Additional conditions are applied  

on the boundary 
 

(0) 0 , '(0) 0 , (0) 0w w x= = =                     (8.31) 
 
Moreover the beam preserves  the constant length  L 
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2 2

0 0

L L

ds L x w ds L
• •

= → + =∫ ∫                     (8.32) 

 
during the whole deformation process. 
 

after 300 force increments

a) initial state

regular meshwith 20 nodes

b) after 80 force
increments

c) after 160 force 
increments

d) after 300 force increments

 
Fig.8. 14: Large deflections of the cantilever beam under concentrated moment – non-adaptive 

HO MFDM solution approach – test no.1 

 
Regular mesh with 20 nodes was introduced, for the test no.1, with concentrated moment 

( )
M

f M
EJ

=  at the unbounded end of the beam. Calculations were performed according to the 

MFDM solution algorithm, proposed in the previous sections. However, the adaptive approach was 
not applied here. The load was successively increased, following the subsequent deformation forms of 
the beam. The mesh remained unchanged. Results are presented in Fig.8.14. It is worth stressing the 
quality of the solution represented by the ideal circle despite how bigg the deflection is. 
 
Test no.2 
 
More sophisticated test no.2 deals with beam loading by the concentrated following force. The 
following form of the right hand side function is then 
 

[ ]1
( , , ) ( ) ( )X L Y Lf x w P P w w P x x

EJ
= − + −                                (8.33) 

 
where XP  and YP  are load projections in the ‘x’ and ‘y’ axis, respectively. The full MFDM algorithm 

with adaptation and HO approximation, proposed in the previous section, was applied here.  
When the mean residual error 
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2 2

xr w f x x f w
•• • •• •   = − ⋅ + + ⋅   
   

                    (8.34) 

 
evaluated at the points between two neighbouring nodes, was larger than the admissible threshold 
value 0.01admε = , the mesh was refined – new nodes were inserted. Additionally, the set of meshes 

was analysed using the multigrid technique, discussed in the previous Chapter. 
 
The results are presented in Fig.8.15 – Fig.8.19. In the initial state (Fig.8.15a), the basic regular mesh 
with 5 nodes only, was introduced. Depsite inserting new nodes into the mesh, during the deformation 
process, the residual error (8.34) raised, because of the increased load value. As a consequence, new 
nodes were again added (Fig.8.15b-c). The adaptive set of irregular meshes is shown in Fig.8.16 – 
Fig.8.18. 
 

a) initial state

regular meshwith 5 nodes
b) after 20 force incrementsand
adaptive mesh refinement(13 nodes)

c) after 50force
increments(21 nodes)

d) after 90force
increments(32 nodes)

 
Fig.8. 15: Large deflections of the cantilever beam under concentrated following force; adaptive 

HO MFDM solution approach – test no.2 

 
 
The process summary is presented in Fig.8.19. Convergence of the residual error (8.34) is shown, in 
the logarithmic scale. In the top graph, the mean Euclidean norm is applied, while in the bottom one, 
results are given in the maximum norm. The residuum (8.34) decreased during the adaptation process 
of the new nodes, which were inserted as long as the admissible error level was reached (horizontal 
dashed line). The residuum (8.34) increased, when new load increment was added, although mesh was 
immediately refined then. Therefore, the residuum (8.34) was kept each time on the same threshold 
level 0.01admε =  
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Fig.8. 16: Set of adaptive irregular meshes - test no.2 

 

 
Fig.8. 17: Set of adaptive irregular meshes - test no.2 (cont.) 
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Fig.8. 18: Set of adaptive irregular meshes - test no.2 (cont.) 

 

force increments

adaptation

log( )e

log( )h

log( )e

log( )h

 
Fig.8. 19: Convergence of the residuum - test no.2 

 
8.3 1D fuzzy sets analysis 

 
8.3.1 Introduction 

 
In the classical structural mechanics [14], dynamic and static loads (e.g. concentrated or 

uniformed) or boundary supports have unambiguously fixed locations and values.. However, much 
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more precise numerical modelling may include also uncertainty of some data. Uncertainty of this type 
may occur in physical structural parameters, the parameters of probability distribution, as well as in 
the processes of design and planning, construction, damage, preservation and strengthening. These 
processes may include e.g. human mistakes and errors as well as uncertain boundary conditions. 
Uncertainty in the above mentioned processes influences the physical structural parameters. The 
effects of uncertainty may be described mathematically by fuzzy sets theory [67, 79]. 

 In the fuzzy sets analysis [67, 79], which become more and more popular nowadays, one 
deals with the fuzzy models of the entering data, with specified membership function, characterising 
the data randomness. Sought is the fuzzy model of the problem solution, corresponding to those fuzzy 
data. As the results, obtained is usually the whole family of solutions, stating the fuzzy solution model 
(e.g. displacements, stresses, ...). Such model should evaluate fuzzy asnwer based on fuzzy data. So 
called defuzzification process may show the most reasonable solution. Such approach may be useful, 
e.g. in case of designing or optimisation of the structure, according to the assumed admissible criterion 
and constraints (e.g. limited maximum deflection magnitude). Information about the sensitivity of this 
structure to changes of some parameters may also be obtained in this way. 

The fuzzy analysis is much more complex than the standard one and require, in general case, 
solution of series similar boundary value problems. Those problems differ from each other e.g. by the 
problem parameter values, and the form of right hand side (of their equations). Moreover, the results 
of singular problems have to be composed in the proper way. Therefore, effective and precise solution 
tool is needed on each step of analysis. Such tool is provided here by the HO MFDM solution 
approach. 

 
8.3.2 Problem formulation 

 

Consider function  ( ): ( )nf f x∈ℜ → ∈ℜx , defined either by the explicit formula 

( )f f= x                        (8.35) 

 
or by the appropriate differential equation, e.g. 

 

 
( )

( )
, ,..., 0

p

p

f f
F f
 ∂ ∂ = ∂ ∂ x x

                                 (8.36) 

 

2 4 5 1x

1( )xµ
1

3 5 8 2x

2( )xµ
1

 
Fig.8. 20: Membership functions of the input data 

 

An uncertainty of data element , 1,...,ix i n=  is characterised by a fuzzy set ( )( ),i i i iX x xµ µ= = , 

where ( )ixµ  is the membership function, corresponding to the randomness of ( )ix  distribution. The 

greater functional values ( )ixµ  are, the better assessment criterion is satisfied. In this Chapter, the 

normalised membership functions 
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( )sup 1
i i

i
x X

xµ
∈

=                                     (8.37) 

 
are considered. Exemplary triangular membership functions are shown in Fig.8.20.  

The fuzzy set  ( ), ( )Z f fµ=  of the function  f  is sought (Fig.8.21), described in terms  of the fuzzy 

randomness of the input arguments { }1 2, ,..., nX X X . When the function  f  is defined explicitly 

(8.35), the problem may be solved analytically. In the case of an implicit form, e.g. differential 
equation (8.36), problem needs numerical treatment. 
 

f

( )fµ

 
Fig.8. 21: Fuzzy distribution of the output function  f 

 
There are two main approaches [67] in order to map the fuzzy sets , 1,...,iX i n=   into the result 

space Z, namely 
 

(i) extension principle, 
(ii) alpha-level optimisation. 

 
8.3.3 Extension principle 

 
In the first case (i), the fuzzy sets , 1,...,iX i n=  are linked with the aid of the Cartesian product 

1 2 ... nX X X× × . The extension principle specifies the mapping of the fuzzy input set into a new 

fundamental set Z, obtained together with the membership function ( )fµ . The membership values 
are computed by the means of the max-min operator. 
The continuous fuzzy input variables , 1,...,ix i n=  posses an infinite number of elements. However, 

for numerical treatment, only a finite sample of elements from both fuzzy numbers may be considered 
(Fig.8.22). All combinations of elements from , 1,...,ix i n=  are to be evaluated using (8.35) or 

(8.36). With an increasing number of combinations of elements from the fuzzy input variables, the 
numerical solution converges to the exact result for  f.  
The accuracy of the membership function of a fuzzy result essentially depends on the number and on 
location of elements from the fuzzy input sets that are chosen for numerical evaluation. The mapping 
model as well as the form of the membership function of the fuzzy input sets affects the numerical 
effort and the accuracy of the fuzzy result. The numerical effort concerning application of the 
extension principle increases exponentially with the number of fuzzy input variables (here, space 
dimension n).  
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Fig.8. 22: Mapping algorithm on the inputs level 

 
Therefore, the extension principle, though very simple in concept, is not applied in fuzzy structural 
analysis. For this reason, a capable numerical technique, the so called alpha-level optimisation, is 
briefly presented in the subsequent section. 
 

8.3.4 Alpha-level optimisation 
 
All fuzzy input variables , 1,...,ix i n=  are discretized using the same number of alpha-levels k, 

which correspond to the specified membership values ( ) , 1,2,...,k
i i nµ = . For each fuzzy input 

variable ( )k
ix  on the k level, computed are elements of the fuzzy result ( )( ) ( ),k kf µ , by means of the 

mapping model (8.35) or (8.37) (Fig.8.23). Once the largest ( )
max

kf  and the smallest  ( )
min

kf   element on 

the k level are determined, two points of the membership function  ( )fµ   are known. In the case of 

convex fuzzy result variables, the ( )fµ  is completely described. The determination of ( )
max

kf  and ( )
min

kf  

replaces the max-min operator of the extension principle. 
The search for the smallest and the largest elements is formulated as an optimisation problem. The 
objective functions 
 

( ) ( ) ( )
1 1

max
,..., , ,...,

min
k

n n if x x x x X


→ ∈


                   (8.38) 

 

have to be satisfied. The requirements ( ) ( )
1,...,

k
n ix x X∈  represent the constraints of the optimisation 

problem. 
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Fig.8. 23: The alpha-section approach 

 
8.3.5 Preliminary example 

 
Results of two simple tests will be presented, in order to illustrate above discussed techniques. 

Consider e.g. the test function 2
1 2: : ( , )f x x fℜ → ℜ → , given in the explicit form 

 
2 2

1 2 1 2( , ) ( 3) ( 6) 2f x x x x= − + − +                                 (8.39) 

 

 
Fig.8. 24: Fuzzy result randomness, evaluated using extension principle 

 

In the simplest solution approach, namely extension principle, the intervals 1 2,5x ∈  and 2 3,8x ∈  

are discretized using 1n  and 2n  points, respectively. Discretization with the same number 

1 2 50n n= =  of  points was applied. Results are presented in Fig.8.24. As it may be observed, results 

are not very accurate and smooth, due to too small number of points. In addition to that, the solution 
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approach given above is very time consuming, mainly because of the large number of min-max 
searching procedures. 
 
 Results for the considered function (8.39), using alpha-level optimisation approach, are 
presented in Fig.8.25. The main advantage of the approach is that one finds the extreme values of 
membership function  f  explicitly, without the additional min-max operation, performed on the set of 
discrete values of  f. However, this approach holds only for convex membership functions. 
 

 
Fig.8. 25: Fuzzy result randomness, evaluated using alpha-level optimisation 

 
The above example, though trivial, reflects the main features of the fuzzy analysis. The main target is 
to determine the fuzzy randomness of the solution, in terms of the fuzzy randomness of the input 
variables.  
 

8.3.6 The MFDM analysis of the simply supported beam 
 

In the previous section, given were outlines of the fuzzy sets analysis, using the alpha-sections 
approach. It will be applied here for solving the boundary value problem for simply supported beam 
deflection [79]. Fuzzy randomness concerns such input parameters as load location and/or the load 
value (Fig.8.26). The MFDM is used here as a tool of numerical analysis needed in the alpha sections 
approach. In the precedding example, there was no need for numerical analysis because the explicit 
analytical formula (8.39) was given. 

In the first problem (test no.1), fuzzy randomness of the load (concentrated force and moment) 

locations are considered. Triangular membership functions of inputs ( )1 1xµ µ=  and ( )2 2xµ µ=  are 

presented in Fig.8.26. Sought is the fuzzy randomness of the beam deflection ( )uµ µ= , which is 

given in the form of the differential equation. Boundary value problem is posed in the local 
formulation 

 

( )

( )
''( ) ( ) , ( )

(0) (4) 0 , 0,4

M x
u x f x f x

EJ
u u x

= = −

= = ∈
                    (8.40) 

 
The beam was discretized with 50 nodes, regularly spaced. In the alpha-level optimisation approach, 
applied here, one has to solve many boundary value problems (8.40), for the fixed load locations 
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( ) ( )
1 2,k kx x . In the first test, applied were 1 2 10n n= =  sections. The partial results, derived in several 

steps of calculations, corresponding to the subsequent sections, are presented in Fig.8.27. Deflections 
for all nodes were evaluated. Their fuzzy model, approximated at nodes, is presented in Fig.8.28. The 
fuzzy randomness in the middle of the beam is shown in Fig.8.29. Finally, Fig.8.30 presents the 2D 
model of fuzzy membership function of the beam deflection. 
 

1 (1.5,2.5)x ∈

2 (2,3)x ∈
b.v. problem
(beam deflection) with
fuzzy data
(variant locations of 
concentrated loads)

''( ) ( ), (0,4)

(0) (4) 0

u x f x x

u u

= ∈
= =

1 (1.5,2.5)x ∈

2 (2,3)x ∈

1 (1.5, 2.5)x ∈ 2 (2,3)x ∈

 
Fig.8. 26: Beam deflection problem with 2 fuzzy input data - test no.1 

 

1α = 0.67α =

0.33α = 0α =

 
Fig.8. 27: Results of beam deflections on the several solution stages - test no.1 
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Fig.8. 28: Fuzzy model of beam deflection - test no.1 

 

 
Fig.8. 29: Fuzzy randomness of deflection in the middle of the beam – test no.1 

 
In the considered example, the total number of 314 boundary value problems were solved, each for 
various load locations, specified by the subsequent sections. As it may be observed (Fig.8.28 – 
Fig.8.30), the results do not exhibit the higher order of smoothness, due to the coarse regular mesh and 
presence of concentrated loading.  
 
In order to improve the results, a finer irregular mesh with 66 nodes was considred. Mesh refinement 
was performed in the intervals of the load variations (Fig.8.31). Additionally, the load values, P and 
M, were also applied with some uncertainty (Fig.8.31). Therefore, fuzzy analysis was performed with 
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4 fuzzy input data (test no.2). Their triangular membership functions are presented on the bottom of 
Fig.8.31. 
The 1 2 20n n= =  number of sections was used, which gave the total number of 11,119 boundary 

value problems solved, each yielded the high quality MFD solution at nodes. The results are presented 
in the similar way as in the previous test no.1, in Fig.8.32 – Fig.8.34.  
 
Significant improvement of the results may be observed, with the smoother deflection (Fig.8.32) and 
smoother membership function (Fig.8.33 and Fig.8.34). 

 

 
Fig.8. 30: Fuzzy randomness of the beam deflection (2D view) - test no.1 

 
 

 
Fig.8. 31: Beam deflection problem with 4 fuzzy input data - test no.2 
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Fig.8. 32: Fuzzy model of beam deflection - test no.2 

 
Fig.8. 33: Fuzzy randomness of deflection in the middle of the beam – test no.2 
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Fig.8. 34: Fuzzy randomness of the beam deflection (2D view) - test no.2 

 
8.4 1D reliability estimation 

 
8.4.1 Problem formulation 

 
Another example was also chosen to show the area of application of the MFDM approach, as 

the effective and precise numerical tool. The reliability estimation problem for the simple 1D structure 
will be analysed [39, 79]. In mechanics, reliability is understood as probability of situation when 
failure, due to appropriate criterion, does not appear. For the simply supported beam, presented in 
Fig.8.35, given is the probability distribution of the concentrated force location ( )p x . 

 

fΩ sΩ

safe
failure ( )p x

sΩ

safe 
location

failure location

safe

 
Fig.8. 35: Safe and failure locations, due to the probability distribution 

 
The force location may fall into the safe sΩ  or failure fΩ  zones. The force locations in the failure 

zones fΩ  produce non-admissible solutions, for beam deflections, violating the applied criterion 
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max 0admg w w= − ≥                                   (8.41) 

 
Here maxw  is the maximum beam deflection caused by the fixed force location, and admw  -  

admissible deflection (Fig.8.36) given. Therefore, the probability of failure may be defined, as follows 
 

( )

( )
f

f s

fp x d

P
p x d

Ω

Ω +Ω

⋅ Ω

=
⋅ Ω

∫

∫
                                  (8.42) 

 
and the reliability is the probability of the reverse situation 

 
1R P= −                        (8.43) 
 

maxw

dopw

failure solution

safe
solution

0g



 ≥



0g


≤


 
Fig.8. 36: Admissible and non-admissible solutions 

 
In the discrete analysis, applied here reliability of a considered beam was estimated using the Monte 
Carlo simulation method, and the MFDM solution approach. In the Monte Carlo simulation method 
[20, 67], one deals with many force locations, randomly chosen, due to the probability distribution.  
For each fixed location the beam deflection problem is solved using the MFDM approach. The failure 
criterion is checked, and the load configuration is examined then, whether it results in safe or failure 
solution. The probability of failure and reliability may be estimated, as follows 
 

, 1f fn n n
P R P

n n

−
≈ = − ≈                     (8.44) 

 
here fn  denotes the number of failure locations and sn  - number of safe locations, derived from the 

Monte Carlo simulations and MFDM solutions. The large number of random solution needed requires 
fast tool for solving the boundary value problems with sufficiently high precision. 
 

8.4.2 Numerical example of the MFDM analysis 
 
The above proposed solution approach, using the Monte Carlo simulation method [20], and the basic 
MFDM solution approach [75], is given below 
 

(i) assume the admissible beam deflection admu , used in the failure criterion 
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(ii) choose a random force location on the beam, based to the Gaussian type probability 
distribution ( )p x  

(iii) for fixed force location, solve the boundary value problem 
 

( )

( , )
''( ) ( ) , ( )

(0) (4) 0 , 0,4

M x P
u x f x f x

EJ
u u x

= = −

= = ∈
                  (8.45) 

 
using the MFDM approach, and randomly chosen loading data 

 
Details of the MFDM solution approach 
a. beam was discretized with 33 nodes, regularly spaced, 
b. solution approach included the MFD schemes generation by means of the MWLS 

approximation, HO approximation using correction terms, as well as an improved 
a’posteriori error estimation, 

c. mesh refinement in the closest neighbourhood of the boundary and force. 
 

(iv) find the maximum nodal value of beam deflection maxu , 

(v) check, whether the failure criterion (8.41) is satisfied, if not, increase the number of 
failures fn , 

(vi) finally, estimate the beam reliability (8.44). 
 
In Fig.8.37, presented is the exemplary result of the random procedure, with the force location fixed, 
as well as the beam deflection problem solved, and failure criterion checked. The force was located in 
the failure zone, in this case. 
 

simulation 
(Monte Carlo)

Bending 
moment

Beam deflection

failuresafe safe

admu

u
M

( )p x

x

 
Fig.8. 37: Exemplary Monte Carlo simulation with the MFDM analysis 



 221 

The tests were performed in 100 series, each one consisted of 2,000 Monte Carlo simulations. That 
gives the total number of solved boundary value problems equal to 200,000. The final results are 
presented in Fig.8.38. Shown are 
 

(i) the exact reliability value, evaluated using formulae (8.42) and (8.43) – dashed line, 
(ii) numerical estimation of the reliability (8.44), from one of the 100 series – light thick line, 
(iii) numerical estimation of the reliability (8.44), averaged from all 100 series – dark thick 

line. 
 
High convergence rate may be observed, when the averaging method is applied. The final numerical 
results are very close to the theoretical value of beam reliability. 
 

(iii) mean value of 100 series
simulated by Monte Carlo followed
by the MFDM analysis

number of simulations

52000 100 2 10n MC simulations series= × = ×

(ii) one of 100 series
consisting of 2000
MC simulations and MFDM
analysis

(i) exact value

Reliability

 
Fig.8. 38: Reliability estimation convergence 

 
The above given 1D examples, though of very simple nature, shows, that there is still need for 
exploring new solution methods, and developing the existing ones. Analysis of many sophisticated 
problems of mechanics may be easier and faster then. Here, presented will be some 2D tests. 
 

 
8.5 2D analysis 
 
8.5.1 Stress analysis in a prismatic bar 

 
Formulation of the b.v. problem: Find the shear stress  
 

2 2
zx zyτ τ τ= +                      (8.46a) 

 
where 



 222 

,zx zyy x
τ τ∂Φ ∂Φ= = −

∂ ∂
                   (8.46b) 

 

in a prismatic bar of square cross-section ( )a a×  subjected to the torsional moment  M. Consider the 

local formulation of the boundary value problem  
 

0

C in

on

∇Φ = − Ω
Φ = ∂Ω

          (8.47) 

 

where Φ  - Prandtl function and C  - torsional angle, and 2M Fd
Ω

= Ω∫ . 

 
The MFDM solution approach with HO approximation was used as a numerical tool for analysis of the 
problem (8.47), and evaluation of the stresses (8.46), in postprocessing. The low and higher order 
MFDM solutions were obtained, and were compared with the known analytical solution [121] given 
below 
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n n
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a C
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2 2
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n n
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k

τ
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∑                (8.50) 

 

where  
(2 1)

, 0,1,...n

n
k n

a

π+= =  

 
The number of terms (n) in above formulae, sufficient for further calculations, was derived from the 
simple convergence test, based on controlling the error 
 

 
( ) ( 1)

0 0 0 0
( )

0 0

( , ) ( , )

( , )

n n

n

x y x y
e

x y

−Φ − Φ=
Φ

 

 

Results for point 0 0

1
( 0, )

2
x y= = , located on the boundary, where the stresses (8.46) are the largest,  

are presented below (Fig.8.39). It may be observed, that for the accuracy level 1210adme −= , it is 

sufficient to use only 6n =  terms in (8.48) ÷ (8.50). 
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Fig.8. 39:  Convergence test for number of terms in the true solutions (8.48) ÷ (8.50) 
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Fig.8. 40:  Prandtl function (1st row) and stress results (2nd row) 

 
Considered was the regular mesh, with  6 6 36× =  nodes. Results are presented in Fig.8.40. In the 
first row, shown is the low order, HO and analytical solution (8.48) for Prandtl function (8.47), while 
in the second row, presented is the total stress τ  (8.46), obtained after differentiation of the low order, 
HO and analytical results. In Fig.8.41, shown is the true error solution, separately for Prandtl function 
(first row) and stress (second row). Each time, presented are the maximum and mean values.  
Due to smooth true solution, it is hard to distinguish the difference between the low and HO solutions, 
especially when using sufficiently dense meshes.  
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In Fig.8.42, shown is the solution convergence on the set of regular meshes, varying in number of 
nodes from  4 4 16× =  to 30 30 900× =  
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Fig.8. 41:  Solution and stress true error for low order and HO approximation 
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Fig.8. 42:  Low order and HO solutions convergence on the set of regular meshes 



 225 

8.5.2 Stress analysis in railroad rail 
 
Find the shear stress (8.46) in a railroad rail subjected to torsional moment  M [86]. Given is the local 
formulation (8.47) of b.v. problem. The rail contour and considered cloud of 300 nodes with Delaunay 
triangulation are presented in Fig.8.43.  

 
Results of solution (first row), and shear stress (second row) for both the low order and HO 
approximation are presented in Fig.8.44, together with the maximum, mean and minimum values. The 
contour maps in Fig.8.45 present the same results, though in different manner. 
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Fig.8. 43:  Rail contour and cloud of nodes with Delaunay triangulation 

 
 

8.5.3 Heat flow analysis in railroad rail 
 
Formulation of the b.v. problem: 
Find the distribution of the temperature  ( , , )T x y t   in the railroad rail (Fig.8.42), for the non-
stationary heat flow process, given by the differential equation 
 

2 T
T

t

∂∇ =
∂

                       (8.51) 

 
with the following boundary conditions 
 

( , , ) 100T x y t
∂Ω

=           (8.52) 

 
and initial condition 
 

( , , 0) 500T x y t= =                       (8.53) 
 
This example may be considered as the computational model of the technological cooling process in 
railroad rail manufacturing. This is an introductory part of the residual stresses analysis in railroad 
rails [75, 86]. 
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Fig. 8.44: Results for shear stress analysis in railroad rail – colour map 
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Fig. 8.45: Results for shear stress analysis in railroad rail – contour map 
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Considered was the same cloud of 300 nodes, as in the previous example (Fig.8.43). The MFDM with 
HO approximation was applied for the spatial ( , )x y  approximation. The time space was divided into 

10 intervals  1, , 0,1,...,9k kt t k+ =  of the same length t∆ . Time integration was performed by 

means of three different schemes (Fig.8.46), namely 
 

k
(known)

k + 1
(unknown)

i

j

i

a) explicit formula

i

j

i

b) standard
implicit formula

i

j

c) improved HO
implicit formula

(Crank – Nicholson)

i

j

 
 

Fig. 8.46: Three different schemes for time integration 
 

a) explicit formula, giving values on the unknown time level  “k+1” one by one, being 
conditionally stable, depending on the time step  t∆ , which can not be too large; for the mesh 
used in the present test, the time step value has to be smaller than 0.04critt∆ = , unless the 

results become unstable, 
b) standard implicit formula, which is unconditionally stable and leads to the SLAE on the 

unknown time level  “k+1”, 
c) improved Crank Nicholson implicit formula, also unconditionally stable and providing SLAE 

on the unknown time level “k+1”. 
 

 
Below presented are results (Fig.8.47 ÷ Fig.8.52) for those three different time schemes, with the same 
time step  0.01t∆ = .  
In Fig.8.47, Fig.8.49 and Fig.8.51 presented are results (temperature distribution) obtained at the ¼ , ½ 
, ¾ of the process and at the end of the process, for each time scheme respectively. 
In Fig.8.48, Fig.8.50, and Fig.8.52 shown is the final temperature distribution after 10 time steps, 
when 10 0.1t t= ⋅ ∆ = . The left graph on the top presents the temperature distribution at the end of the 
process, scaled to its present maximum value, while the graph on the top right shows the same 
temperature distribution, but adjusted to the maximum temperature value in the initial state. 
Additionally, at the bottom presented is the temperature (maximum and mean) change on the 
subsequent time steps. 
 
Results (temperature distribution at the end of the process) from all three time integration schemes a) –
+ b) and c) are compared in the Fig.8.53. They are presented in the form of contour maps. 
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TEMPERATURE for t = 0.07 TEMPERATURE for t = 0.1

 
 

Fig. 8.47: Partial results for the a) explicit scheme 
 

 

 
Fig. 8.48: Final results for the a) explicit scheme 
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Fig. 8.49: Partial results for the b) standard implicit scheme 

 
 

 
Fig. 8.50: Final results for the b) standard implicit scheme 
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Fig. 8.52: Partial results for the c) improved implicit scheme (Crank – Nicholson) 

 
 

 
Fig. 8.52: Final results for the c) improved implicit scheme (Crank – Nicholson) 
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Fig.8.53: Distribution of the temperature for t=0.1 for three time schemes a)-c) 
 
 

8.6 Summary 
 

Several chosen engineering applications of the MFDM adaptive solution approach were 
presented here. The approach uses original concept of the HO approximation provided by correction 
terms of the MFD operator.  

The pupose of analysis of several engineering b.v. problems carried out here was done rather 
in order to show a variety of types of b.v. problems that may be effectively solved by using the HO 
MFDM, than to solve particulary large and complex real problems. 

The full MFDM solution algorithm was successfully applied in several non-linear 1D 
boundary value problems. The meshes were adaptively refined, using appropriate criterion based on an 
improved estimation of the residual error. Adaptive mesh refinement allowed for obtaining the optimal 
problem discretization with high quality HO MFDM solution. The HO correction terms were 
integrated with an iterative process, designed for Newton – Raphson method. Proposed were original 
concepts of optimal relaxation of the solution, improving the convergence rate and reducing 
calculation time. 

The MFDM approach was also applied in tests, that require solving series of boundary value 
problems. These were the fuzzy analysis and Monte Carlo simulation in 1D as well as stress analysis 
and heat flow problems in 2D. 1D examples were chosen from the beam deflection area, for the sake 
of simplicity. 2D tasks concern typical engineering fields, e.g. railroad rail analysis. Due to simplicity 
of the computational model, very large number of boundary value problems may be solved fast, 
providing high quality results. The results obtained justified applying the MFDM solution approach, 
including the HO approximation, to those less typical problems. 

Results presented above concerned boundary value problems of rather simple nature. 
Therefore, 2D problems with complex domain geometry should be considered in the next step of this 
study. However, full application of the mesh generator of Liszka type is required then. Development 
of such generator is an independent research task, not completed yet and will be finalised within 
several months. Therefore, analysis of 2D engineering problems as well as further testing, especially 
3D examples, is planned as the next step of this research. 
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9. Software development 
 
First attempts to desgin a fully integrated system for MFDM analysis were made in the 70’s, 

due to development of the meshless finite difference method. That version allowed for fully automatic 
calculations to be carried out as in advanced programs of the finite element method and was able to be 
preferred in non-linear, optimisation and time-dependent problems. The set of computer programs, 
called FIDAM (Finite Difference-Arbitrary Mesh, [53]) was designed, programmed (in 1977 in Algor 
code) and tested by T.Liszka [53]. It was used for analysis of both linear and nonlinear problems in 
applied mechanics. 

 
The next step was the development in the 80’s of specially designed environment and package 

of procedures, called NAFDEM (Nonlinear Analysis Finite Difference Element Method, [44, 45] 
written in Fortran 77 language by J.Krok). It allowed for mixed FEM AND MFDM analysis [45]. It 
had a special preprocessor JKJK realizing sophisticated symbolic operations [44]. It is still the most 
developed tool for MFDM/FEM analysis. 

 
In the recent years, emphasis was laid upon development of programs for chosen extensions of 

the basic MFDM approach, e.g. for physically based approximation [36] applied in the residual 
stresses analysis of railroad rail [86] as well as for examination of the MWLS approximation [80]. 

 
However, the above mentioned program packages and some other not mentioned here, do not 

allow for effective examination of the HO approximation, discussed in this Thesis. Therefore, 
completely new programs of test nature were designed and generated in order to control ever single 
aspect of the approach and its influence on the approximation quality. All results, presented in the 
previous Chapters in the form of tables and figures, were obtained using those implementations.  

 
Computer algorithms were designed separately for 1D and 2D testing. First, they were based 

on the classic FDM, with regular meshes and interpolation schemes only. Then they were consequently 
developed towards examination of the following features 

 
- arbitrarily irregular clouds of nodes, allowing for adaptive and random distribution, 
- the MWLS approximation, for MFD schemes - generation and postprocessing, 
- various MFD schemes, allowing for effective approximation on the boundary, including 

a. simple multipoint schemes, 
b. use of generalised degrees of freedom, 
c. use of boundary condition and domain equation specified on its boundary, 
d. other combined techniques. 

- a’posteriori solution error estimation, in the local form (at any required point), 
- a’ posteriori residual error estimation, in the local form (at any required point), 
- convergence analysis on the set of regular meshes, 
- generation criterion for new nodes, based on improved estimation of the residual error, 
- mesh smoothing, based on appropriate smoothing criteria, avoiding abrupt changes in mesh 

density, 
- a’posteriori solution error estimation, in the global (integral) form, over the chosen interval 

(hierarchic, smoothing and residual types), 
- development of error indicators for irregular mesh, 
- convergence analysis on a set of adaptive irregular meshes, 
- multgrid analysis on a set of regular and irregular meshes for standard (low order) and HO 

approximation. 
 

Program codes (named HOMFDM1D for analysis of 1D tasks, and HOMFDM2D for analysis 
of 2D problems) were written in the C++ language [24] by the Author of the Thesis, and applied in the 
Microsoft Visual C++ environment. All codes are based on the object-oriented programming style [24, 
25]. Appropriate classes result from the MFDM nature, e.g. point, node, cloud of nodes, Delaunay 
triangle, Voronoi polygon (last two in 2D programs), and MFD star. Most of the graphs were prepared 
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in the Matlab environment [11, 61], especially due to convenient visualisation package. The last 
Figures, concerning the railroad analysis (Chapter 8) were made using the graphical system, prepared 
by I.Jaworska et al. [31]. 

 
Both programs, for 1D and 2D analysis, use external code designed for generating 2D mesh 

topology, taken from [106]. It provides the following topology information 
 

- list of all Delaunay triangles, given by their vertices (mesh nodes), 
- list of all Voronoi polygons, given by their edges (lines between their vertices). 
 
Below given is the exemplary set of data needed for analysis of nonstationary heat flow in railroad rail, 
analysed in the previous Chapter. Before the solution algorithm starts, one has to provide the following 
information: 
 
- geometrical information (boundary), 
- number of nodes  n, 
- number of nodes in the domain MFD stars, 
- number of nodes in the boundary MFD stars, 
- the basic approximation order  p, 
- number of Gauss integration points, needed in postprocessing, 
- type of boundary approximation (standard, use of generalised degrees of freedom, use of boundary 

condition, ...), 
- type of time integration scheme (explicit, implicit), 
- boundary and initial data, resulted from the type of b.v. problem, 
- time step and number of time steps, 
- the admissible error level and maximum number of iterations, needed in iteration processes. 
 
As the results, one obtains the variety of text results, which are plotted to the default output (screen, 
file, ...). Among them, one may distinguish 
 
- topology information (Voronoi polygons, Delaunay triangles, nodes neighbours, ...) 
- list of nodes belonging to subsequent MFD stars, 
- the MFD formulae, up to the p-th order, obtained at each node by means of MWLS approximation, 
- the low order and higher order solutions for function and its deritavies up to the 2p-th order at each 

time step, 
- the low order and higher order solutions obtained at each point of interest (postprocessing) 
 
Afterwards, such set of results is used in the graphical postprocessor (Matlab). 

 
The problem of 2D topology generation combined with the mesh generator of Liszka type is 

being currently developed by a third person. However, in the moment of writing the Thesis, that 
computer program has not been completed yet. Therefore, computational tools implemented so far still 
does not allow for obtaining in 2D some useful features including 

 
- conversion from an arbitrary mesh  to the Liszka’s type mesh, 
- information about neighbour nodes, 
- the optimal domain tessellation into the Voronoi polygons, 
- list of nodes of one level denser mesh, 
- list of nodes of one level coarser mesh. 
 
These problems, though currently developed are not fully prepared for demonstration, without an 
appropriate mesh generator. Therefore, only simple 1D and 2D examples were mostly examined in the 
previous Chapters, using  the complete MFDM analysis, with the adaptive multigrid solution approach 
included. 
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 However, research time, which was initially planned to be devoted to solution of complex 2D 
examples, was effectively used for several other interesting aspects. Especially, two new topics were 
preliminary investigated: 
 
- development of the MFDM based on the Meshless Local Petrov-Galerkin approach, 
- a study on acceleration of iterative solution methods. 
 

Some recent results of these attempts were already presented in the Chapter 3 (MFDM 
discretization of the MLPG5 formulation). A newly developed acceleration approach by means of 
relaxation technique was successfully applied and implemented in the non-linear analysis, discussed in 
the previous Chapter. 

 
All computer programs mentioned above, though produced very promising results so far, still 

have the nature of prototypes need further development, especially towards solving of 3D boundary 
value problems. Planned is also their adaptation to other chosen engineering applications.  

 
All of the computer codes and executed files are enclosed to the present Thesis. 
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10. Final remarks 
 

An adaptive HO solution approach to analysis of boundary value problems, based on the 
meshless FDM, has been presented. Solution process includes original concepts of higher order 
approximation, a’posteriori error estimation, solution smoothing, nodes generation, and mesh 
modification, as well as an adaptive multigrid solution procedure.  

 
The MFDM is one of the basic methods for analysis of the boundary value problems of 

mechanics. It is also the oldest, and therefore possibly the most developed, meshless method. In the 
meshless methods, approximation of the sought function is built in terms of nodes. They may be totally 
irregularly distributed and are not bounded by any given a’priori imposed structure like finite element 
or mesh regularity. Such cloud of nodes is also free from any mapping restrictions. 

The characteristic feature of the MFDM is replacement of differential operators with finite 
difference ones. Therefore, any formulation of the boundary value problem, which involves function 
and its derivatives, may be used for the MFD analysis. Recently developed are the so-called global-
local formulations [4, 5], where an appropriate variational principle is satisfied only locally, over 
specially specified sub-domains. The weight function in the one of the Petrov-Galerkin approaches 
(MLPG5), applied here, may have non-zero values only on those sub-domains. This feature may 
significantly simplify the numerical integration there. 

In the MFD analysis, any mesh generator, designed and developed for the FEM, might be 
applied. However, it is most convenient to use a mesh generator specially designed for the MFDM, e.g. 
long time practised mesh generator of Liszka type. It is based on a control of the mesh density. Nodes 
are selected  (“sieved”) out of a very dense regular background mesh. Selection is done according to a 
prescribed local density requirements. There is no connectivity a’priori required in the cloud of nodes 
generated in this way. However, it is convenient to determine mesh topology after nodes generation. 
As a base of such topology, the Liszka type mesh generator provides Voronoi tessellation (domain 
partition into the Voronoi polygons in 2D and Voronoi polyhedrons in 3D) and Delaunay (optimal) 
triangulation (in 2D). Knowledge of the mesh topology is very useful for the local approximation. It 
allows e.g. for generation of the optimal MFD stars. 

In the MFDM, like in some other meshless methods, the sought function is usually 
approximated by means of the MWLS technique. This technique is used for generation of the MFD 
schemes, as well as for postprocessing of the final results. The MFD schemes are found for complete 
set of derivatives up to an assumed order  p  at once, rather than for any particular differential operator. 
Any type of MFD operator may be composed then. Afterwards, the MFD equations are generated in a 
way dependent on the problem formulation, followed by imposition of  boundary conditions. Finally, 
one obtains the MFD solution, by means of  analysis of appropriate SAE. 

There are two main approaches applied in order to improve the MFD solution. One of them 
uses finer meshes (h-approach), whereas in the second one, the approximation order is raised (p-
approach). The last one may be performed in several ways, e.g. by introducing additional nodes or 
degrees of freedom to the standard MFD star. The other way is to use so called multipoint approach. 
However, the Higher Order approximation approach, proposed here, is based on the Taylor series 
expansion of the MFD operator value and use them in order to build relevant correction terms to the 
standard MFD formulation, rather than on adding new nodes into the MFD operator. Those correction 
terms consist of the Higher Order derivatives, starting from the  p + 1  order up to and including the 
assumed order ( , 0 2p s s p+ < ≤ ). Correction terms may also contain singularity and/or 
discontinuity terms of the sought function and/or its derivatives, treated as jumps added to the right 
hand side of the SAE. 

The HO MFDM approach is very effective. It needs two steps, using in both the same basic 
MFD operator. Each time solved is the same set of the MFD equations, though with a modified right 
hand side. Quality of the final MFD solution depends then on the truncation error of the Taylor series 
only. Such approach does not depend on the quality of the MFD operator itself. Each one is 
individually adjusted by the correction terms to the same approximation level. 
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Among many applications of those correction terms, mostly investigated were here 
 

- improvement of the MFD approximation 
a. inside the domain, 
b. on the boundary, 

- solution quality increase from lower to higher order by means of correction terms, 
- high quality a’posterori, residual and solution error estimation, given in the local and global 

(integral) forms, 
- improvement of the generation criteria of new nodes in the adaptive solution approach, 
- modified multigrid solution approach, yielding the MFD solution, exact within the assumed 

approximation order. 
 
Inside domain, the HO derivatives may be evaluated by an appropriate formulae composition. 

Some other techniques may be used as well, e.g. the multipoint approach [51, 75]. However, 
evaluation of the HO derivatives may need special treatment on the boundary. Several approaches 
were proposed and tested, e.g. use of the right hand side function of the differential equation 
considered and/or use of generalised degrees of freedom. 

The MFD approximation on the boundary may be done in several ways: 
 

- use of internal nodes only, 
- use of internal nodes and additional generalised degrees of freedom, 
- use of internal and external fictitious nodes, 
- use of boundary conditions as well as the domain equation specified on the boundary. 
 
In fact, the HO approximation provided by the correction terms, may be applied to anyone of those, 
above listed techniques. Such combination may provide the optimal MFD approximation on the 
boundary, compared to the one applied inside the domain. It is worth stressing that it may be also 
applied to nodes located near the boundary, where the standard MWLS approximation is usually of 
lower quality. 
 
In the present work, discussed were not only the boundary value problems posed in the local 
formulation, but also in chosen global ones. Correction terms may be used there as well, after 
following the numerical integration. 

 
HO approximation terms may be used not only in order to improve the solution quality, but 

also to refine estimation of solutions and residuals. Those estimates may be used in the adaptive mesh 
generation. Local error indicators specially developed for irregular cloud of nodes are proposed and 
used to examine the convergence rate of both the solutions and residuals. Moreover, the global criteria 
developed for error estimation in the FEM analysis may be adopted and applied here. When including 
the local HO MFD error estimates, they provide especially high quality (2p-th order) estimation for 
solution and residual errors, when compared with those obtained by means of the existing smoothing 
procedures of the  p+1 order. It is worth stressing here that these error estimates though developed here 
for the MFDM analysis may be also used in the other meshless methods, and in the FEM. 

Many 1D and 2D benchmark tests examined so far indicate the potential power of the 
approach in fast solving (high convergence rate) boundary value problems, as well as in the error 
analysis and adaptivity. The total number of nodes in a considered mesh may be reduced, without 
compromising the quality of the MFD solution improved by raising the rank of the local 
approximation. On the other hand, the multigrid approach allows for acceleration of the solution 
process. The standard multigrid procedures, like prolongation and restriction, may be modified and 
successfully applied to the both low order (without correction [51, 75]), and HO (with correction [93]) 
MFD solutions. 
 
In the Author’s opinion, the following are original elements in the solution approach presented in 
Thesis, and briefly outlined above: 
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- first implementation of the HO approximation for arbitrary type of boundary value problem 
formulation (both local and global), 

- formulation of the HO approximation, provided by correction terms, including 
a. use of correction terms for raising approximation order inside the domain, 
b. use of correction terms for effective discretization of boundary conditions as well as 

raising approximation order on the boundary, and in its closest neighbourhood, 
- improved local estimation of the solution error, 
- improved local estimation of the residual error, 
- use of correction terms in adaptation criterion, 
- use of HO correction terms for solution error estimation in the integral (global) form, 
- error indicators, used for convergence estimation on a set of irregular adaptive meshes, 
- use of HO correction terms in the multgrid solution approach, 
- solution algorithms and computer implementation, 
- test programs, for 1D and 2D HO MFDM analysis. 
 
Special test programs were designed and developed in order to examine the most of features mentioned 
above. They were developed separately for 1D and 2D model benchmark problems. Codes were 
written in the C++ labguage, with the use of object programming. Most of the Figures were prepared in 
the Matlab graphic environment.  
In the first stage of research, analysed were 1D and 2D benchmark problems, with known analytical 
solutions. Those tests allowed for examination and, in some cases, exploration of very interesting 
features of the HO MFDM solution approach. Results of those tests were presented in Chapters 3 ÷ 7. 
As the final stage of research, analysed were chosen engineering applications of the MFDM approach. 
Special emphasis was laid upon problems, which required numerous solutions of the basic b.v. 
problems, e.g. non-linear tasks or fuzzy sets analysis. The HO MFDM solution approach was used as 
the high quality numerical solver. Among 2D problems, the most interesting was the railroad rail 
analysis, which may be treated as the part of residual stresses analysis. The same computer programs, 
as for the benchmark tests, were applied and results were presented in Chapter 8. However, only 
simple 2D structures were analysed so far, due to the lack of completed Liszka’s type mesh generator 
that is the part of other research. 
 
Besides unfinished mesh generator, there were several other problems, that emerged during the whole 
research. Some of them still need further consideration. Those problems are briefly outlined below 
 
- effective discretization of the boundary conditions, 
- MFD residual analysis in the boundary zones, 
- the optimal generation of the HO derivatives, so far proposed was the MFD formulae composition 

which is very effective technique; however it involves rather the information from the whole 
problem domain, nor from the closest neighbourhood only, 

- HO MFDM discretization and approximation of the 2nd variational  non-symmetric formulation, 
for 2D boundary value problems, 

- the muligrid solution approach, for 2D problems, depending on the Liszka’s type mesh generator 
possibilities. 

 
Altogether all experience gained so far in development of the HO MFDM approach clearly indicate 
that it presents very general and potentially very promising approach to effective analysis of a wide 
class of boundary value problems in mechanics posed either in the local or in any global formulation. 

However, as it may be seen, a lot of work has still to be done. Beside further testing and 
solving boundary value problems, and error analysis, future plans include combinations of the 
approach with the other discrete methods, especially with the Finite Element Method, as well as further 
development of a special MFD node generator, based on the mesh density control, higher order 
approximation technique, and multigrid solution procedure. Considered is also application of the HO 
MFDM approach to analysis of boundary value problems given in the local Petrov-Galerkin 
formulation type. The most important directions of the further research should include the following 
topics: 
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- mathematical foundation of the MFDM with Higher Order approximation, and error estimation 
provided by correction terms, 

- extension of the HO MFDM solution approach to 3D problems, 
- the MFDM approach formulation on the differential manifold, with the HO approximation used, 
- combinations of the MFDM, using HO approximation, with other discrete methods, e.g. Finite 

Element Method (FEM), Boundary Element Method (BEM), other Meshless Methods (MM), 
Artificial Intelligence (AI) methods, e.g. Neural Networks (NN), Evolutionary Algorithms (EA), 

- HO approximation problem formulation for other meshless methods, 
- Further development of the MFDM/MLPG approach, 
- various applications of the MFDM approach with HO approximation to analysis problems of in 

mechanics 
o Analysis of large engineering problems, 
o Taking into account discontinuities and/or singularities in 2D and 3D problems, 
o Constrained optimisation problems, e.g. experimental data smoothing, 
o Damage and fracture mechanics problems, 
o Sensitivity analysis, 
o Analysis of problems, based on the theory of fuzzy sets approach, 
o Reliability estimation of structures, 

- software development. 
 
The problem of HO approximation was formulated here and tested on a variety of 1D and 2D 
benchmark tests. However, this is only the beginning of the research. All of the analysed problems 
gave very encouraging results. These results indicate that HO MFDM approach may be potentially a 
very general and effective tool for numerical analysis of b.v. problems. However, true justification of 
the proposed approach should be demonstrated in future on variety of real large engineering tasks. 
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Notation 
 

L  - differential operator inside the domain 

bL  - differential operator on the domain boundary 
f – right hand side function of the differential equation in the domain 
g – right hand side function of the differential equation on the domain boundary 
L – MFD operator inside the domain, corresponding to L  
Lb – MFD operator on the boundary, corresponding to bL  
n – number of nodes 
i – node number (central node of the MFD star) 
m – number of nodes in the MFD star 
j - node number in the MFD star  
A – coefficient matrix of  SLAE 
b – right hand side vector of  SLAE 
N – number of intervals (in 2D), number of Delaunay triangles (in 2D) 
k – integration interval number (in 1D), Delaunay triangle number (in 2D) 

gN  - number of the Gauss points for integration 

l – Gauss point number 

lP  - Gauss integration point 
J  - Jacobian of the transformation matrix 

lω  - integration weight, assigned to the point lP  
I – error functional 
M – matrix of MFD formulae 
p – basic approximation order 
s – rank of additional terms in the Taylor series expansion 
∆  - correction term 

( )kJ  - jump (discontinuity) term of the k-th order 
( )kS  - singularity term of the k-th order 

v – test function 

vp  – order of the local approximation of the test function  v 
u, w – trial functions 

wp  – order of the local approximation of the trial function w 
( ) ( ),L Lu w  - low order solution 
( ) ( ),H Hu w  - Higher Order solution 
( ) ( ),T Tu w  - true (analytical) solution 

e – solution error 
( )LTe  - true low order solution error 
( )HTe  - true HO solution error 
( )LHe  - estimated low order solution error 

r – solution residual error 
( )Lr  - low order residual error 
( )Hr  - HO residual error 
( )Tr  - true residual error 
( )i jp →  - prolongation from mesh „i” to mesh „j” 

( )j ir →  - prolongation from mesh „j” to mesh „i” 
,u w  - smoothed (prolonged) solution 

,u w∆ ∆  - solution correction 
,λ µ  - relaxation parameters 
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